⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 readme

📁 计算一般形式弹性张量最优化TI近似的C程序 Computing the optimal TI approximation of a general elastic tensor
💻
字号:
These programs are released courtesy of BP. They were originally writtenby Joe Dellinger in 1997 at the former Amoco Tulsa Technology Center, releasedinformally in April 2000, and then reworked for more formal release inMarch 2005. I would appreciate acknowledgement if you find them useful.If you want to include this code in some package you are distributing,then please acknowledge where the code came from, and how what youare distributing varies from what I distributed.These programs should work on anything with a reasonable C compiler.--- Joe DellingerBP EPTG, Houston, TexasThu Mar 24 19:56:42 CST 2005------------------------------------------------------------------------------Copyright notice for SEG distribution:Copyright (c) 2005 by the Society of Exploration Geophysicists.For more information, go to http://software.seg.org/2005/0001 .You must read and accept usage terms at:http://software.seg.org/disclaimer.txt before use.------------------------------------------------------------------------------To compile:	(using GNU make and GNU cc)	make	(ignore any warning about possible use of uninitialized variables	in titest... it's a bogus warning)To print man pages:	nroff -man < titest.mn	nroff -man < orthotest.mnTo install:	up to youTo clean up:	make clean------------------------------------------------------------------------------What's here?:titest, orthotestWhat they do:Titest and orthotest are programs for calculating how close totransversely isotropic or orthorhombic a set of 21 elastic constants are.General anisotropy requires 21 velocity parameters to describe.Orthorhombic media have 3 perpendicular planes of symmetry, and require 9.Transversely isotropic ("TI") has an axis of rotational symmetry andrequires only 5. There is no proprietary information in these programs;they merely implement equations described in a paper by Patrick Rasolofosaonof IFP. (Note there are typos in some equations listed in that paper.)Those equations define a "distance" measure between two sets of 21 elasticconstants. The only "tricky" coding in these programs is how I do thesearch over all possible orientations of the anisotropic symmetry axes.What they are useful for:These programs are mostly useful for testing and debugging various otherprograms for manipulating and/or inverting elastic constants.These programs accept as input 21 elastic constants, and output the nearestTI and orthorhombic equivalents.------------------------------------------------------------------------------To test:titest < TI_TEST_INPUTHere is an example of program "titest". The input is in fact TI, butits coordinate system has been rotated to obscure this fact. Theconstants have been (accidentally) perturbed and rotated from constantsin: L. E. A. Jones and H. F. Wang, 1981, Ultrasonic velocities inCretaceous shales from the Williston Basin: GEOPHYSICS, 46, 288-297.Input C matrix:      331.3         128       112.3      -1.304      -23.33      -1.922         128       339.4       108.7      -9.835      -4.084      -1.994       112.3       108.7       226.2      0.4475       1.101       1.748      -1.304      -9.835      0.4475       56.89        1.27      -9.889      -23.33      -4.084       1.101        1.27        59.5      -3.662      -1.922      -1.994       1.748      -9.889      -3.662       103.7 Rotated C matrix:        341         129         107  -6.207e-05  -3.986e-05  -0.0002278         129         341         107  -3.395e-07   1.949e-05   4.203e-05         107         107         227   5.273e-06  -2.096e-05  -0.0001103  -6.207e-05  -3.395e-07   5.273e-06          54   1.381e-05   4.175e-05  -3.986e-05   1.949e-05  -2.096e-05   1.381e-05          54   1.415e-05  -0.0002278   4.203e-05  -0.0001103   4.175e-05   1.415e-05         106 TI approximation:        341         129         107           0           0           0         129         341         107           0           0           0         107         107         227           0           0           0           0           0           0          54           0           0           0           0           0           0          54           0           0           0           0           0           0         106 TI approximation in original coordinate system:      331.3         128       112.3      -1.304      -23.33      -1.922         128       339.4       108.7      -9.835      -4.084      -1.994       112.3       108.7       226.2      0.4474       1.101       1.748      -1.304      -9.835      0.4474       56.89        1.27      -9.889      -23.33      -4.084       1.101        1.27        59.5      -3.662      -1.922      -1.994       1.748      -9.889      -3.662       103.7 Normalized deviation from TI in original coordinate system, in percent:    -0.0000     -0.0000     -0.0000     -0.0000      0.0000      0.0000     -0.0000      0.0001      0.0000     -0.0000     -0.0000      0.0000     -0.0000      0.0000     -0.0000      0.0000      0.0000      0.0000     -0.0000     -0.0000      0.0000     -0.0000      0.0000      0.0000      0.0000     -0.0000      0.0000      0.0000      0.0000      0.0000      0.0000      0.0000      0.0000      0.0000      0.0000     -0.0000 distance from TI = 0.000 percentSymmetry axis: (0.1981, 0.0805, 0.9769)theta = 67.890,   phi = 12.345------------------------------------------------------------------------------Here is an example of program "orthotest". This example comes from apaper by Robert Vestrum, then at the University of Calgary:Vestrum, R., Brown, J., and Easley, D. T., 1996,From group or phase velocities to the general anisotropic stiffness tensor,in Seismic Anisotropy, edited by J. Rathore, p. 101-140, published by the SEG.Rob measured 21 elastic constants for a laboratory sample, a syntheticmedium made of resin and burlap that was designed to have orthorhombicsymmetry. This program finds that his elastic constants are indeed veryclose to being orthorhombic and shows the orientation of the sample.If the medium was in fact not only orthorhombic but TI, this program alsodetects that by trying out each orthorhombic symmetry axis to see howwell it works as a TI axis of symmetry.In this example we see the medium is not terribly orthorhombic... one ofthe orthorhombic axes found is quite close to also being a TI symmetry axis.orthotest < VESTRUM_TEST_INPUTInput C matrix:      16.85        7.88        6.81        0.07       -0.18        0.12        7.88       16.03        6.51           0       -0.26       -0.08        6.81        6.51       11.14           0       -0.05       -0.04        0.07           0           0        3.03        0.01        0.04       -0.18       -0.26       -0.05        0.01         3.4       -0.01        0.12       -0.08       -0.04        0.04       -0.01        3.89 Rotated C matrix:      16.05       7.881       6.497     -0.1896    -0.01734     -0.0446       7.881       16.89       6.789    -0.01128     0.08461    0.008745       6.497       6.789       11.14     0.07228    -0.01369    -0.06715     -0.1896    -0.01128     0.07228       3.389    -0.01637    -0.01323    -0.01734     0.08461    -0.01369    -0.01637       3.036     0.07561     -0.0446    0.008745    -0.06715    -0.01323     0.07561       3.862 Orthorhombic approximation:      16.05       7.881       6.497           0           0           0       7.881       16.89       6.789           0           0           0       6.497       6.789       11.14           0           0           0           0           0           0       3.389           0           0           0           0           0           0       3.036           0           0           0           0           0           0       3.862 Orthorhombic approximation in original coordinates:      16.86       7.891       6.789    0.002643     -0.1654      0.1098       7.891       16.04       6.503     0.01784    -0.07036     -0.0364       6.789       6.503       11.15    0.002313     -0.1208     0.02525    0.002643     0.01784    0.002313       3.041     0.03028     -0.0423     -0.1654    -0.07036     -0.1208     0.03028       3.388  -0.0004675      0.1098     -0.0364     0.02525     -0.0423  -0.0004675       3.873 Normalized deviation from Orthorhombic in original coordinates, in percent:    -0.0180     -0.0320      0.0629      0.2021     -0.0438      0.0307     -0.0320     -0.0445      0.0222     -0.0535     -0.5690     -0.1308      0.0629      0.0222     -0.0438     -0.0069      0.2125     -0.1958      0.2021     -0.0535     -0.0069     -0.0338     -0.0608      0.2469     -0.0438     -0.5690      0.2125     -0.0608      0.0347     -0.0286      0.0307     -0.1308     -0.1958      0.2469     -0.0286      0.0522 Distance from Orthorhombic = 1.563 percentX axis: (0.0860, -0.9963, -0.0089)  theta=175.069, phi=90.511, TI dist=13.479%Y axis: (-0.9950, -0.0863, 0.0496)  theta=-94.957, phi=87.158, TI dist=11.422%Z axis: (-0.0502, 0.0046, -0.9987)  theta=-84.748, phi=177.112, TI dist=3.464%

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -