⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 stronggentleclassifier.m

📁 MIT的一个adaboost算法演示程序
💻 M
字号:
function [Cx, Fx] = strongGentleClassifier(x, classifier)
% [Cx, Fx] = strongLogitClassifier(x, classifier)
%
% Cx is the predicted class 
% Fx is the output of the additive model
% Cx = sign(Fx)
%
% In general, Fx is more useful than Cx.
%
% The weak classifiers are stumps

% Friedman, J. H., Hastie, T. and Tibshirani, R. 
% "Additive Logistic Regression: a Statistical View of Boosting." (Aug. 1998) 

% atb, 2003
% torralba@ai.mit.edu

Nstages = length(classifier);
[Nfeatures, Nsamples] = size(x); % Nsamples = Number of thresholds that we will consider

Fx = zeros(1, Nsamples);
for m = 1:Nstages
    featureNdx = classifier(m).featureNdx;
    th = classifier(m).th;
    a = classifier(m).a;
    b = classifier(m).b;
    
    Fx = Fx + (a * (x(featureNdx,:)>th) + b); %add regression stump
end

Cx = sign(Fx);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -