📄 selectbestregressionstump.m
字号:
function [featureNdx, th, a , b, error] = selectBestRegressionStump(x, z, w);
% [th, a , b] = fitRegressionStump(x, z);
% z = a * (x>th) + b;
%
% where (a,b,th) are so that it minimizes the weighted error:
% error = sum(w * |z - (a*(x>th) + b)|^2) / sum(w)
% atb, 2003
% torralba@ai.mit.edu
[Nfeatures, Nsamples] = size(x); % Nsamples = Number of thresholds that we will consider
w = w/sum(w); % just in case...
th = zeros(1,Nfeatures);
a = zeros(1,Nfeatures);
b = zeros(1,Nfeatures);
error = zeros(1,Nfeatures);
for n = 1:Nfeatures
[th(n), a(n) , b(n), error(n)] = fitRegressionStump(x(n,:), z, w);
end
[error, featureNdx] = min(error);
th = th(featureNdx);
a = a(featureNdx);
b = b(featureNdx);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -