📄 top.v
字号:
//-----------------------------------------------------------------------------
//
// Author: John Clayton
// Date : Aug. 20, 2002
// Update: Aug. 20, 2002 Obtained this file from "build_12" project.
// Update: Sep. 12, 2002 Tested rs232_syscon with tracking autobaud circuit
// inside it, so that the whole system can run at
// different clock speeds. Synchronizing to high
// baud rates at low clock speeds doesn't work (as
// expected!)
//
// Description
//-----------------------------------------------------------------------------
// This targets an XC2S200 board which was created for educational purposes.
//
// There are:
// 8 LEDs (led[7:0])
// 4 switches (switch[3:0])
// 1 clock of 32.000 MHz clock, present on GCLK1
// 1 clock of 49.152 MHz clock, present on GCLK0
// 4 lines of ps2 clock input (port A in documentation notes)
// 4 lines of ps2 data input (port A in documentation notes)
// 16 lines of LCD panel control (port B in documentation notes)
// 2 lines of rs232 serial connection (port C in documentation notes)
//-----------------------------------------------------------------------------
//
// NOTE: This build is for testing out an automatic BAUD rate generator
//
// The following 'include line must be used with Synplify to create EDIF
// The line must be commented for ModelSim.
//`include "d:\synplicity\synplify_70\lib\xilinx\virtex.v"
module top (
sys_clk_0,
sys_clk_1,
switch,
led,
lcd_drive,
rs232_rxd,
rs232_txd,
port_e,
port_f,
dat_o
);
// I/O declarations
input sys_clk_0; // 49.152 MHz
input sys_clk_1; // 32.000 MHz
input [3:0] switch;
input rs232_rxd;
input [13:0] port_f;
output [7:0] led;
output [15:0] lcd_drive;
output rs232_txd;
output [13:0] port_e;
output [15:0] dat_o;
// Internal signal declarations
wire [4:0] r0_wire; // "Read" regs. Used to "hold" pin locations, so that
// the synthesis tools do not complain about these pins
// being present in the constraints file and not in the
// design...
wire [13:0] input_f = ~port_f; // Port f input inverted (bcd thumbwheel)
// System Clock signals
wire sys_clk_variable;
wire sys_clk_variable_half;
wire sys_clk_lcd;
//wire sys_clk_half;
wire [8:0] sys_clk_freq;
reg [3:0] clk_count0; // Counter used to generate clock
reg [3:0] clk_count1; // Counter used to generate clock
// Signals from risc processor
wire [15:0] risc_aux_adr; // AUX (expansion) bus
wire risc_aux_we; // AUX we
wire [15:0] risc_prog_dat; // Program data
wire [12:0] risc_prog_adr; // (Up to 8k words possible)
wire [8:0] risc_ram_adr; // RAM file address
wire [7:0] risc_ram_dat_o; // RAM file data
wire [7:0] risc_ram_dat_i; // RAM file data
wire risc_ram_we; // RAM we
wire risc_stb; // Clock enable for risc processor
// Signals from rs232_syscon
wire [15:0] adr; // A side address
wire [7:0] dat; // A side data
wire we;
wire stb;
wire rst;
wire master_br;
// Address decode signals
wire code_space; // High for access to code space (AUX bus)
wire rgb_space; // High for access to rgb space (AUX bus)
wire io_space; // High for access to I/O space (AUX bus)
wire [2:0] io_sel; // 1 of these is active high for I/O space accesses
// Hardware breakpoint and single stepping signals
wire [12:0] break_prog_adr; // For hardware breakpoint on prog. adr
wire [13:0] break_prog_dat; // For hardware breakpoint on prog. dat
wire [ 1:0] break_enable; // bit 1: enables dat BP, bit 0: enables adr BP
wire breakpoint; // 1 = any breakpoint condition encountered.
reg [ 5:0] step_count; // Number of steps remaining to execute
wire [ 5:0] clocks_to_step; // Desired number of steps to execute
wire begin_stepping; // Automatically resets itself when written!
wire stepping_active; // 1 during single stepping
wire reset_single_stepper; // 1 during breakpoint or reset
wire [ 1:0] processor_control; // Contains two signals (renamed below)
wire run_free; // Allows processor to run constantly
wire forced_reset; // Forces the processor into reset
wire bus_rdy; // 1 = processor can execute this clock cycle.
// A side RAM signals
wire [7:0] code_ram_dat_o;
wire [2:0] rgb_ram_dat_o;
wire [7:0] regfile_ram_dat_o;
// B side (Peripheral side) RAM signals
wire [2:0] pixel_dat;
wire [13:0] pixel_adr; // (12288 pixels addressed)
// Other...
wire reset = switch[0]; // Simply a renaming exercise
//--------------------------------------------------------------------------
// Clock generation
//--------------------------------------------------------------------------
clock_multiply
clock_block
(
.clkin(sys_clk_0),
.reset(1'b0),
.clk2x(),
.clk4x(sys_clk_4x),
.locked()
);
// This uses up a GCLK resource.
always @(posedge sys_clk_variable)
begin: clock_block_1
clk_count1 <= clk_count1 + 1;
end
assign sys_clk_variable_half = clk_count1[0];
//--------------------------------------------------------------------------
// Instantiations
//--------------------------------------------------------------------------
// This is for monitoring signals using a logic analyzer
assign dat_o = {
0
// sys_clk_lcd,
// sys_clk_variable_half // DDS frequency is output here.
};
assign port_e = 0; // Don't drive the stepper for now.
// This block generates a divided version of the fast clock
// (It is put into a separate module to facilitate adding timing
// constraints to it...)
clock_divider #(3)
clock_block_0
(
.clk_i(sys_clk_4x),
.clk_o(sys_clk_lcd)
);
// This block generates a variable frequency system clock
assign sys_clk_freq = input_f[7:0] + 1;
square_wave_dds #(
9 // DDS counter length
)
dds1
(
.clk(sys_clk_4x),
.clk_en(switch[3]),
.reset(reset),
.frequency(sys_clk_freq),
.clk_out(sys_clk_variable)
);
// This block runs the flat panel display (5x5 pixels)
vga_128_by_92 lcd_block (
.lcd_clk(sys_clk_lcd),
.lcd_reset(reset),
.pixel_dat_i(pixel_dat),
.pixel_adr_o(pixel_adr),
.lcd_drive(lcd_drive)
);
// This block is the risc microcontroller
assign risc_stb = (bus_rdy || rst);
risc16f84_clk2x
processor1
(
.prog_dat_i(risc_prog_dat[13:0]), // [13:0] ROM read data
.prog_adr_o(risc_prog_adr), // [12:0] ROM address
.ram_dat_i(risc_ram_dat_i), // [7:0] RAM read data
.ram_dat_o(risc_ram_dat_o), // [7:0] RAM write data
.ram_adr_o(risc_ram_adr), // [8:0] RAM address
.ram_we_o(risc_ram_we), // RAM write strobe (H active)
.aux_adr_o(risc_aux_adr), // [15:0] Auxiliary address bus
.aux_dat_io(dat), // [7:0] AUX data (shared w/rs232_syscon)
.aux_we_o(risc_aux_we), // Auxiliary write strobe (H active)
.int0_i(1'b0), // PORT-B(0) INT
.reset_i(rst), // Power-on reset (H active)
.clk_en_i(risc_stb), // Clock enable for all clocked logic
.clk_i(sys_clk_variable_half) // Clock input
);
// This block is the rs232 user interface for debugging, programming etc.
rs232_syscon #(
4, // Number of Hex digits for addresses.
2, // Number of Hex digits for data.
2, // Number of Hex digits for quantity.
16, // Characters in the input buffer
4, // Bits in the buffer pointer
63, // Clocks before watchdog timer expires
6, // Bits in watchdog timer
8, // Number of data fields displayed per line
3, // Number of bits in the fields counter
2 // Number of bits in the digits counter
)
syscon_1 ( // instance name
.clk_i(sys_clk_variable_half),
.reset_i(reset),
.master_bg_i(master_br),
.ack_i(code_space || rgb_space || ram_space || io_space),
.err_i(1'b0),
.master_adr_i(risc_aux_adr),
.master_stb_i(risc_stb),
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -