⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mem_interface_top_ddr_controller_0.txt

📁 该项对于设计DDSRAM有很大的帮助
💻 TXT
📖 第 1 页 / 共 4 页
字号:
           if ( (rfc_count == 6'b00001) && (conflict_detect_r) )begin
              next_state = ACTIVE;
           end else if (rfc_count == 6'b00001) begin
              next_state = IDLE;
           end else begin
              next_state = AUTO_REFRESH_WAIT;
           end
        end

        ACTIVE             : next_state = ACTIVE_WAIT;

        ACTIVE_WAIT        : begin
             if (rcd_count == 3'b000) begin
                if(WR)
                  next_state = FIRST_WRITE;
                else if (RD)
                  next_state = FIRST_READ;
                else
                  next_state = IDLE;
             end
             else
               next_state = ACTIVE_WAIT;
        end // case: `active_wait

        FIRST_WRITE  : begin
           if(((conflict_detect & (~conflict_resolved_r))|| auto_ref) || RD)
             next_state = WRITE_WAIT;
           else if((burst_cnt == 3'd1) && WR)
             next_state = BURST_WRITE;
           else
             next_state = WRITE_WAIT;
        end

        BURST_WRITE : begin
           if(((conflict_detect & (~conflict_resolved_r))|| auto_ref) || RD)
             next_state = WRITE_WAIT;
           else if((burst_cnt == 3'd1) && WR)
             next_state = BURST_WRITE;
           else
             next_state = WRITE_WAIT;
        end

        WRITE_WAIT          : begin
           if ((conflict_detect & (~conflict_resolved_r))|| auto_ref)  begin
              if ((wtp_count == 4'b0000) && (ras_count == 4'b0000))
                next_state = PRECHARGE;
              else
                next_state = WRITE_WAIT;
           end else if (RD ) begin
              next_state = WRITE_READ;
           end else if ((WR) && (wrburst_cnt == 3'b010)) begin
              next_state = BURST_WRITE;
           end else if((WR) && (wrburst_cnt == 3'b000)) begin 
              next_state = FIRST_WRITE;
           end else if (idle_cnt == 4'b0000) begin
              next_state = PRECHARGE;
           end else begin
              next_state = WRITE_WAIT;
           end
        end

        WRITE_READ         : begin
             if (wr_to_rd_count == 4'b0000) begin
                next_state = FIRST_READ;
             end else begin
                next_state = WRITE_READ;
             end
        end

        FIRST_READ  :begin
           if(((conflict_detect & (~conflict_resolved_r))|| auto_ref) || WR)
             next_state = READ_WAIT;
           else if((burst_cnt == 3'd1) && RD)
             next_state = BURST_READ;
           else
             next_state = READ_WAIT;
        end

        BURST_READ :begin
           if(((conflict_detect & (~conflict_resolved_r))|| auto_ref) || WR)
             next_state = READ_WAIT;
           else if((burst_cnt == 3'd1) && RD)
             next_state = BURST_READ;
           else
             next_state = READ_WAIT;
        end


        READ_WAIT          : begin
           if ((conflict_detect & (~conflict_resolved_r)) || auto_ref) begin
              if(rtp_count == 4'b0000 && ras_count == 4'b0000)
                next_state = PRECHARGE;
              else
                next_state = READ_WAIT;
           end else if (WR) begin
              next_state = READ_WRITE;
           end else if ((RD) && (read_burst_cnt <= 3'b010)) begin
              if(af_empty_r)
                next_state = FIRST_READ;
              else
                next_state = BURST_READ;
           end else if (idle_cnt == 4'b0000) begin
              next_state = PRECHARGE;
           end else begin
              next_state = READ_WAIT;
           end
        end

        READ_WRITE          : begin
           if (rd_to_wr_count == 4'b0000) begin
              next_state = FIRST_WRITE;
           end else begin
              next_state = READ_WRITE;
           end
        end

      endcase
   end


   //register command outputs
   always @ (posedge clk_0) begin
      if (rst_r) begin
         state_r2 <= 5'b00000;
         state_r3 <= 5'b00000;
      end
      else begin
         state_r2 <= state;
         state_r3 <= state_r2;
      end
   end

   always @ (posedge clk_0) begin
      if (rst_r) begin
         init_state_r2 <= 5'b00000;
         init_state_r3 <= 5'b00000;
      end
      else begin
         init_state_r2 <= init_state;
         init_state_r3 <= init_state_r2;
      end
   end

   // commands to the memory
   always @ (posedge clk_0) begin
      if (rst_r) begin
         ddr_ras_r <= 1'b1;
      end
      else if (state == LOAD_MODE_REG_ST || state == PRECHARGE || state ==ACTIVE
               || state == AUTO_REFRESH || init_state==INIT_LOAD_MODE_REG_ST ||
               init_state == INIT_PRECHARGE || init_state == INIT_AUTO_REFRESH
               || init_state == INIT_DUMMY_ACTIVE) begin
         ddr_ras_r <= 1'b0;
      end
      else ddr_ras_r <= 1'b1;
   end

   // commands to the memory
   always @ (posedge clk_0) begin
      if (rst_r)
        ddr_cas_r <= 1'b1;
      else if (state == LOAD_MODE_REG_ST || init_state == INIT_LOAD_MODE_REG_ST
               || read_write_state || init_state == INIT_DUMMY_FIRST_READ ||
               dummy_write_state || state==AUTO_REFRESH ||
               init_state == INIT_AUTO_REFRESH || init_state== INIT_DUMMY_READ
               || pattern_read_state)
        ddr_cas_r <= 1'b0;
      else if ((state == ACTIVE_WAIT)  || (init_state == INIT_DUMMY_ACTIVE_WAIT))
        ddr_cas_r <= 1'b1;
      else
        ddr_cas_r <= 1'b1;
   end // always @ (posedge clk_0)

   // commands to the memory
   always @ (posedge clk_0) begin
      if (rst_r)
        ddr_we_r <= 1'b1;
      else if (state == LOAD_MODE_REG_ST || state == PRECHARGE ||
               init_state==INIT_LOAD_MODE_REG_ST || init_state==INIT_PRECHARGE ||
               write_state || dummy_write_state)
        ddr_we_r <= 1'b0;
      else
        ddr_we_r <= 1'b1;
   end

   //register commands to the memory
   always @ (posedge clk_0) begin
      if (rst_r) begin
         ddr_ras_r2 <= 1'b1;
         ddr_cas_r2 <= 1'b1;
         ddr_we_r2 <= 1'b1;
      end
      else begin
         ddr_ras_r2  <= ddr_ras_r;
         ddr_cas_r2  <= ddr_cas_r;
         ddr_we_r2   <= ddr_we_r;
      end
   end

   //register commands to the memory
   always @ (posedge clk_0) begin
      if (rst_r)
        begin
           ddr_ras_r3 <= 1'b1;
           ddr_cas_r3 <= 1'b1;
           ddr_we_r3  <= 1'b1;
        end
      else begin
         ddr_ras_r3  <= ddr_ras_r2;
         ddr_cas_r3  <= ddr_cas_r2;
         ddr_we_r3   <= ddr_we_r2;
      end // else: !if(rst_r)
   end // always @ (posedge clk_0)


   always @ (posedge clk_0) begin
      if (rst_r)
        row_addr_r[`row_address-1:0] <= `row_address'h0;
      else
        row_addr_r[`row_address-1:0] <= af_addr[(`row_address + `col_ap_width)-1
                                                :`col_ap_width];
   end

   // chip enable generation logic
   always @ (posedge clk_0) begin
      if (rst_r)
        ddr_cs_r[`no_of_cs-1 : 0] <=  `no_of_cs'h0;
      else begin
         if (af_addr_r[`chip_address + `bank_address +`row_address+
                       `col_ap_width-1:`bank_address+`row_address+`col_ap_width]
             == `chip_address'h0) begin
            ddr_cs_r[`no_of_cs-1 : 0] <= `no_of_cs'hE;
         end  else if (af_addr_r[`chip_address + `bank_address +`row_address +
                                 `col_ap_width-1:`bank_address +`row_address +
                                 `col_ap_width] == `chip_address'h1) begin
            ddr_cs_r[`no_of_cs-1 : 0] <= `no_of_cs'hD;
         end else if (af_addr_r[`chip_address + `bank_address +`row_address +
                                `col_ap_width-1:`bank_address +`row_address +
                                `col_ap_width] == `chip_address'h2) begin
            ddr_cs_r[`no_of_cs-1 : 0] <= `no_of_cs'hB;
         end else if (af_addr_r[`chip_address + `bank_address +`row_address +
                                `col_ap_width-1:`bank_address +`row_address +
                                `col_ap_width] == `chip_address'h3) begin
            ddr_cs_r[`no_of_cs-1 : 0] <= `no_of_cs'h7;
         end else
           ddr_cs_r[`no_of_cs-1 : 0] <= `no_of_cs'hF;
      end // else: !if(rst_r)
   end // always@ (posedge clk_0)

   // address during init
   always @ (posedge clk_0) begin
      if (rst_r)
        ddr_address_init_r <= `row_address'h0000;
      else if (init_memory) begin
         if (init_state_r2 == INIT_PRECHARGE)
            ddr_address_init_r <= `row_address'h0400; //A10= 1 for precharge all
         else if ( init_state_r2 == INIT_LOAD_MODE_REG_ST && init_count_cp == 4'h3)
           ddr_address_init_r <= ext_mode_reg;       // A0 == 0 for DLL enable
         else if ( init_state_r2 == INIT_LOAD_MODE_REG_ST && init_count_cp == 4'h4 )
           ddr_address_init_r <= (`row_address'h0100 | load_mode_reg);// A8 == 1
                                                                  //for DLL reset
         else if ( init_state_r2 == INIT_LOAD_MODE_REG_ST && init_count_cp == 4'h9 )
           ddr_address_init_r <= (`row_address'hFEFF & load_mode_reg);// A8 = 0
                                              //for DLL reset bit to deactivate
         else
           ddr_address_init_r <= `row_address'h0000;
      end
   end // always @ (posedge clk_0)

   always @ (posedge clk_0) begin
      if (rst_r)
        ddr_address_r1 <= `row_address'h0000;
      else if ((init_state_r2 == INIT_DUMMY_WRITE1) ||
               (init_state_r2 == INIT_PATTERN_READ1))
        ddr_address_r1 <= `row_address'h0000;
      else if ((init_state_r2 == INIT_DUMMY_WRITE2) ||
                (init_state_r2 == INIT_PATTERN_READ2))
        ddr_address_r1 <= ddr_address_BL;
      else if ((state_r2 == ACTIVE))
        ddr_address_r1 <= row_addr_r;
      else if (read_write_state_r2)
        ddr_address_r1 <=  af_addr_r[`row_address-1 :0] & `row_address'hFBFF;
                                        // Auto Precharge option is disabled
      else if (state_r2 == PRECHARGE || init_state_r2 == INIT_PRECHARGE) begin
           ddr_address_r1 <= `row_address'h0400;
      end
      else if (state_r2 == LOAD_MODE_REG_ST ||
               init_state_r2 == INIT_LOAD_MODE_REG_ST)
        ddr_address_r1 <= af_addr_r[`row_address-1:0];
      else ddr_address_r1 <=  `row_address'h0000;
   end // always @ (posedge clk_0)

   always @ (posedge clk_0) begin
      if (rst_r)
        ddr_address_r2 <= `row_address'h0000;
      else
        begin
           if(init_memory)
             ddr_address_r2 <= ddr_address_init_r;
           else
             ddr_address_r2 <= ddr_address_r1;
        end
   end

   always @ (posedge clk_0) begin
      if (rst_r) begin
         ddr_ba_r1[`bank_address-1:0] <= `bank_address'h0;
      end
      else if (init_memory == 1'b1 && (state_r2 == LOAD_MODE_REG_ST ||
                                init_state_r2 == INIT_LOAD_MODE_REG_ST)) begin
         if (init_count_cp == 4'h3)
           ddr_ba_r1[`bank_address-1:0] <= `bank_address'h1;
         else ddr_ba_r1[`bank_address-1:0] <= `bank_address'h0;
      end else if ((state_r2 == ACTIVE)|| (init_state_r2 == INIT_DUMMY_ACTIVE)
                   || (state_r2==LOAD_MODE_REG_ST) ||
                   (init_state_r2==INIT_LOAD_MODE_REG_ST) ||
                   ((state_r2==PRECHARGE) || (init_state_r2 == INIT_PRECHARGE)
                    & PRE_r))
        ddr_ba_r1[`bank_address-1:0] <= af_addr[(`bank_address+`row_address +
                         `col_ap_width)-1:(`col_ap_width + `row_address)];
      else ddr_ba_r1[`bank_address-1:0] <= ddr_ba_r1[`bank_address-1:0];
   end

   always @ (posedge clk_0) begin
      if (rst_r)
        ddr_ba_r2 <= `bank_address'h0;
      else
        ddr_ba_r2 <= ddr_ba_r1;
   end

   always @ (posedge clk_0) begin
      if (rst_r)
        ddr_cs_r1[`no_of_cs-1:0]    <= `no_of_cs'h0;
      else if (init_memory == 1'b1 ) begin
         if (chip_cnt == 2'h0)
           ddr_cs_r1[`no_of_cs-1:0] <= `no_of_cs'hE;
         else if (chip_cnt == 2'h1)
           ddr_cs_r1[`no_of_cs-1:0] <= `no_of_cs'hD;
         else if (chip_cnt == 2'h2)
           ddr_cs_r1[`no_of_cs-1:0] <= `no_of_cs'hB;
         else if (chip_cnt == 2'h3)
           ddr_cs_r1[`no_of_cs-1:0] <= `no_of_cs'h7;
         else
           ddr_cs_r1[`no_of_cs-1:0] <= `no_of_cs'hF;
      end
      else if ((state_r3 == AUTO_REFRESH ) || (init_state_r3 == INIT_AUTO_REFRESH ))
        ddr_cs_r1[`no_of_cs-1:0] <=    `no_of_cs'h0;
      else if ((state_r3 == ACTIVE )||(init_state_r3 == INIT_DUMMY_ACTIVE)||
               (state_r3==LOAD_MODE_REG_ST) ||
               (init_state_r3==INIT_LOAD_MODE_REG_ST)
               ||(state_r3 == PRECHARGE_WAIT) ||
               (init_state_r3 == INIT_PRECHARGE_WAIT))
        ddr_cs_r1[`no_of_cs-1:0] <= ddr_cs_r[`no_of_cs-1:0];
      else
        ddr_cs_r1[`no_of_cs-1:0] <= ddr_cs_r1[`no_of_cs-1:0];
   end // always @ (posedge clk_0)

   always @ (posedge clk_0) begin
      if (rst_r)
        conflict_resolved_r <= 1'b0;
      else begin
         if (((state == PRECHARGE_WAIT) || (init_state == INIT_PRECHARGE_WAIT))
             & conflict_detect_r)
           conflict_resolved_r  <= 1'b1;
         else if(af_rden)
           conflict_resolved_r  <= 1'b0;
      end
   end

   always @ (posedge clk_0) begin
      if (rst_r)
        ddr_cke_r<= `cke_width'h0;
      else begin
         if(done_200us == 1'b1)
           ddr_cke_r<= `cke_width'hF;
      end
   end

   assign ctrl_ddr_address[`row_address-1:0]  = ddr_address_r2[`row_address-1:0];
   assign ctrl_ddr_ba [`bank_address-1:0]     = ddr_ba_r2[`bank_address-1:0];
   assign ctrl_ddr_ras_L = ddr_ras_r3;
   assign ctrl_ddr_cas_L = ddr_cas_r3;
   assign ctrl_ddr_we_L  = ddr_we_r3;
   assign ctrl_ddr_cs_L = 2'b00;
   assign ctrl_ddr_cke  = ddr_cke_r;

endmodule

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -