📄 algorithmlp.java
字号:
p.x = ((MyPoint)v.elementAt(i)).x; mv.addElement(new MyPoint(p)); } return average ; } /** * Computes the Auto Correlation and Linear Coefficients and * displays the coefficients. * * @return True * */ boolean step2() { autoCorrelation(); lpcCoefficient(); final_estimate(); // need a subroutine here to calculate the actual error: // 1. Get first two points on the estimated waveform. // 2. Check the point given by the user for the x-coordinate, // if the x-coordinate of the user point is same as // either of two points [from one], // 2a. YES. note the difference in the y-coordinate, this is the error. // 2b. Error Energy is square of this term. // 2c. NO. check if the user point is outside these two points // 2c.1. Yes, pick the next point in the estimated waveform, // and repeat from step 2 again. // 2c.2. No, note the x-coordinate of the user point, // find the y-coordinate lying on the straight line between // the two estimated points. // 2c.2a. Find the difference in the y-coordinates calculate in // step 2c.2 and the user given. This is the error. // 2c.3 The Error Energy is the square of this term. // 3. Continue with step 2 // till you have covered all the user defined points. if(set1_d.size() > 0) { actual_err_1 = (double) 0; actual_err_1 = actual_error(y_estimate1, set1_d); } if(set2_d.size() > 0) { actual_err_2 = (double) 0; actual_err_2 = actual_error(y_estimate2, set2_d); } if(set3_d.size() > 0) { actual_err_3 = (double) 0; actual_err_3 = actual_error(y_estimate3, set3_d); } if(set4_d.size() > 0) { actual_err_4 = (double) 0; actual_err_4 = actual_error(y_estimate4, set4_d); } step2_display(); return true; } /** * * Computes the autocorrelation coeffient from the data sets * */ public void autoCorrelation() { if (iset1.size() > 0 ) { auto_co_1 = new double[lporder + 1]; autocorrelate(iset1, auto_co_1); } if (iset2.size() > 0) { auto_co_2 = new double[lporder + 1]; autocorrelate(iset2, auto_co_2); } if (iset3.size() > 0) { auto_co_3 = new double[lporder + 1]; autocorrelate(iset3, auto_co_3); } if (iset4.size() > 0) { auto_co_4 = new double[lporder + 1]; autocorrelate(iset4, auto_co_4); } } /** * * Actaully computes the autocorrelation coefficients * * @param v Vector of datapoints * @param autoCoeff_co array of autocorrelation coefficients * */ public void autocorrelate ( Vector v, double[] autoCoeff_co) { int size; size = v.size(); double[] amplitude_y = new double[size]; // to store the amplitude for calculation autocoefficient // for (int i = 0; i < size; i++) amplitude_y[i] = ((MyPoint)v.elementAt(i)).y; for (int j = 0; j <= lporder; j++) { autoCoeff_co[j] = 0; if ( j < size) for (int k = 0; k < size - j; k++) autoCoeff_co[j] = autoCoeff_co[j] + amplitude_y[k] * amplitude_y[k + j]; } // normalize the autocorrelation cofficient // for (int i = lporder; i >= 0; i--) autoCoeff_co[i] = autoCoeff_co[i] / autoCoeff_co[0]; } /** * * Computes the Linear Prediction coefficient from the data sets * */ public void lpcCoefficient() { // Rabiner, Schafer, "Digital Processing of Speech signals", // Bell Laboratories, Inc. 1978, // section 8.3.2 Durbin's recursive solution for // the autocorrelation equations pp 411-412 if (set1_d.size() > 0) { final_lpc_1 = new double [ lporder + 1]; ref_coeff_1 = new double [ lporder + 1]; estimate_err_1 = calculate_lpc( auto_co_1, final_lpc_1, ref_coeff_1); } if (set2_d.size() > 0) { final_lpc_2 = new double [ lporder + 1]; ref_coeff_2 = new double [ lporder + 1]; estimate_err_2 = calculate_lpc( auto_co_2, final_lpc_2, ref_coeff_2); } if (set3_d.size() > 0) { final_lpc_3 = new double [ lporder + 1]; ref_coeff_3 = new double [ lporder + 1]; estimate_err_3 = calculate_lpc( auto_co_3, final_lpc_3, ref_coeff_3); } if (set4_d.size() > 0) { final_lpc_4 = new double [ lporder + 1]; ref_coeff_4 = new double [ lporder + 1]; estimate_err_4 = calculate_lpc( auto_co_4, final_lpc_4, ref_coeff_4); } } /** * * Actually calculate the LP coefficient and the Residual Error * Energy, and Reflection Coefficients * * @param auto_coeff array of auto correlation coefficients * @param lpc array of linear prediction coefficients * @param rc_reg array of reflection coefficients * * @return residual error energy in a double * */ public double calculate_lpc (double[] auto_coeff, double[] lpc, double[] rc_reg) { int j_bckwd = 0; long middle_index = 0; // Reference: // J.D. Markel and A.H. Gray, "Linear Prediction of Speech," // Springer-Verlag Berlin Heidelberg, New York, USA, pp. 219, // 1980. // initialization // lpc[0] = 1; double err_energy = auto_coeff[0]; // if the energy of the signal is zero we set all the predictor // coefficients to zero and exit // if (err_energy == (double)0) { for (int i = 0; i < lporder + 1 ; i++) lpc[i] = 0; } else { // do the first step manually // double sum = 0; double tmp = 0; sum = -auto_coeff[1] / err_energy; rc_reg[1] = sum; lpc[1] = rc_reg[1]; tmp = 1 - rc_reg[1] * rc_reg[1]; err_energy *= tmp; // recursion // for (int i = 2; i <= lporder; i++) { sum = 0; for (int j = 1; j < i; j++) sum += lpc[j] * auto_coeff[i - j]; rc_reg[i] = -(auto_coeff[i] + sum) / err_energy; lpc[i] = rc_reg[i]; j_bckwd = i - 1; middle_index = i / 2; for (int j = 1; j <= middle_index; j++) { sum = lpc[j_bckwd] + rc_reg[i] * lpc[j]; lpc[j] = lpc[j] + rc_reg[i] * lpc[i - j]; lpc[j_bckwd] = sum; j_bckwd--; } // compute new error // tmp = 1.0 - rc_reg[i] * rc_reg[i]; err_energy *= tmp; } } return err_energy; } /** * * Calculates the estimated points for the data inputs * */ public void final_estimate() { if(iset1.size() > 0) estimate (iset1, y_estimate1, average1, final_lpc_1); if(iset2.size() > 0) estimate (iset2, y_estimate2, average2, final_lpc_2); if(iset3.size() > 0) estimate (iset3, y_estimate3, average3, final_lpc_3); if(iset4.size() > 0) estimate (iset4, y_estimate4, average4, final_lpc_4); } /** * * Estimates the amplitude based on the LP coeficients. * * @param iset interpolated data points * @param y_estimate predicted final signal data points * @param avg mean of the original datapoints given * @param final_lpc array of final linear prediction coefficients * */ public void estimate( Vector<MyPoint> iset, Vector<MyPoint> y_estimate, double avg, double[] final_lpc) { y_estimate.removeAllElements(); double amplitude[]; for(int i = 0; i < iset.size(); i++) y_estimate.addElement(new MyPoint((MyPoint)iset.elementAt(i))); amplitude = new double[y_estimate.size()]; for (int i = 0; i < y_estimate.size(); i++) amplitude[i] = ((MyPoint)y_estimate.elementAt(i)).y; ((MyPoint)y_estimate.firstElement()).y = 0 ; for ( int i = 1; i < y_estimate.size(); i++ ) { int z = i; double sum = 0; for( int j = 1; (j <= lporder) && (z > 0); j++, z-- ) sum = sum - amplitude[z - 1] * final_lpc[j]; ((MyPoint)y_estimate.elementAt(i)).y = sum + avg; } } /** * * Compute the actual error from the given data points and the estimated * values. * * @param y_estimate datapoints of the estimated datapoints * @param iset original datapoints * * @return actual error energy in a double */ public double actual_error (Vector y_estimate, Vector iset) { double error_value; double act_error = (double) 0; int j = 0; int i = 0; // first point and the last point have their x-coordinates same // So the difference in y-values is the error value // error_value = ((MyPoint)y_estimate.firstElement()).y - ((MyPoint)iset.firstElement()).y; act_error = act_error + error_value * error_value; error_value = ((MyPoint)y_estimate.lastElement()).y - ((MyPoint)iset.lastElement()).y; act_error = act_error + error_value * error_value; // for next values // need to continue till all the user defined points are exhausted // j++; for (i = 1; ( (i < y_estimate.size()) && (j < iset.size()) ); i++) { while ( (((MyPoint)y_estimate.elementAt(i)).x < ((MyPoint)iset.elementAt(j)).x) && ((i < y_estimate.size() - 1) && (j < iset.size())) ) { i++; } if ( j < iset.size()) { if ( ((MyPoint)y_estimate.elementAt(i)).x == ((MyPoint)iset.elementAt(j)).x ) { error_value = ((MyPoint)y_estimate.elementAt(i)).y - ((MyPoint)iset.elementAt(j)).y; act_error = act_error + error_value * error_value; } if ( ((MyPoint)y_estimate.elementAt(i)).x > ((MyPoint)iset.elementAt(j)).x ) { double y1 = ((MyPoint)y_estimate.elementAt(i)).y; double y2 = ((MyPoint)y_estimate.elementAt(i - 1)).y; double x1 = ((MyPoint)y_estimate.elementAt(i)).x; double x2 = ((MyPoint)y_estimate.elementAt(i - 1)).x; double x_unknown = ((MyPoint)iset.elementAt(j)).x; error_value = y2 - ( (x2 - x_unknown) * ( y2 - y1) / (x2 - x1)); act_error = act_error + error_value * error_value ; } } j++; } return act_error; } /** * * Displays LP order, Error Energy and Reflection Coefficients * */ public void step2_display() { // display the LP order // pro_box_d.appendMessages(" LP order = " + lporder + "\n"); if (set1_d.size() > 0 ) { int num_pts = iset1.size(); int n = 0; display_result(auto_co_1, ref_coeff_1, final_lpc_1, actual_err_1, estimate_err_1, n, num_pts); } if (set2_d.size() > 0 ) { int num_pts = iset2.size(); int n = 1; display_result(auto_co_2, ref_coeff_2, final_lpc_2, actual_err_2, estimate_err_2, n, num_pts); } if (set3_d.size() > 0 ) { int num_pts = iset3.size(); int n = 2; display_result(auto_co_3, ref_coeff_3, final_lpc_3, actual_err_3, estimate_err_3, n, num_pts); } if (set4_d.size() > 0 ) { int num_pts = iset4.size(); int n = 3; display_result(auto_co_4, ref_coeff_4, final_lpc_4, actual_err_4, estimate_err_4, n, num_pts); } } /** * Display the results in the process box * * @param auto_coeff Auto Correlation Coefficients * @param refCoef Refelction Coefficient * @param final_lpc Linear Prediction Coefficients * @param est_err Estimated Error * @param act_err Actual Error * @param length Length of the data points * */ public void display_result( double[] auto_coeff, double[] refCoef, double[] final_lpc, double est_err, double act_err, int index, int length) { pro_box_d.appendMessages("\n" + " Class " + index + " : \n"); pro_box_d.appendMessages(" Number of Points = " + length + "\n"); pro_box_d.appendMessages( " AutoCorrelation Coefficients:" + "\n"); pro_box_d.appendMessages(" [ "); for (int i = 0 ; i <= lporder; i++) if (i == lporder) pro_box_d.appendMessages(MathUtil.SetDecimal(auto_coeff[i], 3) + " "); else pro_box_d.appendMessages(MathUtil.SetDecimal(auto_coeff[i], 3) + ", "); pro_box_d.appendMessages(" ]"); pro_box_d.appendMessages("\n" + " Reflection Coefficients:" + "\n"); pro_box_d.appendMessages(" [ "); for (int i = 1 ; i <= lporder; i++) if (i == lporder) pro_box_d.appendMessages(MathUtil.SetDecimal(refCoef[i], 3) + " "); else pro_box_d.appendMessages(MathUtil.SetDecimal(refCoef[i], 3) + ", "); pro_box_d.appendMessages(" ]"); pro_box_d.appendMessages("\n" + " Prediction Coefficients:" + "\n"); pro_box_d.appendMessages(" [ "); for (int i = 0 ; i <= lporder; i++) if (i == lporder ) pro_box_d.appendMessages(MathUtil.SetDecimal(final_lpc[i], 3) + " "); else pro_box_d.appendMessages(MathUtil.SetDecimal(final_lpc[i], 3) + ", "); pro_box_d.appendMessages(" ]"); pro_box_d.appendMessages("\n" + " Estimated Error Energy = " + MathUtil.SetDecimal(act_err, 3)); pro_box_d.appendMessages("\n" + " Actual Error Energy = " + MathUtil.SetDecimal(est_err, 3) + "\n"); } /** * * displays the predicted signal * * @return True * */ boolean step3() { // The display needs to be changed to draw a line between // the two points on the waveform. // The method is: // 1. Get the first two estimated points. // 2. Draw a straight line between these two points. // 3. Drop the first point, now take the next point. // 4. Continue with step 2 and 3 in the same way, // till you come to the end. // if(set1_d.size() > 0) output_panel_d.addOutput( y_estimate1, Classify.PTYPE_LINE, Color.black); if(set2_d.size() > 0) output_panel_d.addOutput( y_estimate2, Classify.PTYPE_LINE, Color.pink); if(set3_d.size() > 0) output_panel_d.addOutput( y_estimate3, Classify.PTYPE_LINE, Color.cyan); if(set4_d.size() > 0) output_panel_d.addOutput( y_estimate4, Classify.PTYPE_LINE, Color.magenta); output_panel_d.repaint(); // displaying "Algorithm Complete" // pro_box_d.appendMessages("Algorithm Complete " + "\n"); return true; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -