📄 mainmenu.java,v
字号:
// ********************************************************************* // // declare class /** * * constructor initializes objects and containers * * @@param vec vector of url's * @@param con applet context * */ MainMenu(Vector vec, AppletContext con) { super(); // initialize the input and output panel objects // urlvec = vec; context = con; // initialize the labels and text fields // xMinLabel = new JLabel("X minimum: "); xMaxLabel = new JLabel("X maximum: "); yMinLabel = new JLabel("Y minimum: "); yMaxLabel = new JLabel("Y maximum: "); xMinField = new JTextField("-1.0", 10); xMaxField = new JTextField("1.0", 10); yMinField = new JTextField("-1.0", 10); yMaxField = new JTextField("1.0", 10); colorselection = new JLabel("Select Class Colors"); dset1color = new JLabel("Class 0"); dset2color = new JLabel("Class 1"); dset3color = new JLabel("Class 2"); dset4color = new JLabel("Class 3"); pointsLabel = new JLabel("Points : "); meanxLabel = new JLabel("Mean(X): "); meanyLabel = new JLabel("Mean(Y): "); setgausLabel = new JLabel("Gaussian Settings"); covLabel = new JLabel("Covariance:"); cov11Label = new JLabel(" Cov[1,1]: "); cov12Label = new JLabel(" Cov[1,2]: "); cov21Label = new JLabel(" Cov[2,1]: "); cov22Label = new JLabel(" Cov[2,2]: "); pointsField = new JTextField("25", 10); meanxField = new JTextField("0.0", 10); meanyField = new JTextField("0.0", 10); cov11Field = new JTextField("0.05", 10); cov12Field = new JTextField("0.0", 10); cov21Field = new JTextField("0.0", 10); cov22Field = new JTextField("0.05", 10); guessesLabel = new JLabel("Centroids: "); iterationsLabel = new JLabel("Iterations: "); guessesField = new JTextField("4", 10); iterationsField = new JTextField("10", 10); clusterLabel = new JLabel("Iterations: "); clusterField = new JTextField("10", 10); lporderLabel = new JLabel("LP Order: "); lporderField = new JTextField("8", 10); pforderLabel = new JLabel("PF Order: "); pforderField = new JTextField("8", 10); kforderLabel = new JLabel("KF Order: "); kforderField = new JTextField("8", 10); meas_gain_label = new JLabel("Measurement Gain: "); meas_gain_field = new JTextField("1.0", 10); state_gain_label = new JLabel("State Gain: "); state_gain_field = new JTextField("1.0", 10); var_meas_noise_label = new JLabel("Variance of Measurement Noise: "); var_meas_noise_field = new JTextField("10", 10); var_state_noise_label = new JLabel("Variance of State Noise: "); var_state_noise_field = new JTextField("10", 10); iporderLabel = new JLabel("Interpolation Order: "); iporderField = new JTextField("10", 10); // create a border around the control panel // setBorder(BorderFactory.createEtchedBorder()); // create components for the help box // frame = new JFrame(); // create components for the help box // setccolorsdlg = new JFrame(); // create a frame for the time scales // scale = new JFrame(); // create a frame for the gaussian distribution // setgausdlg = new JFrame(); // create a frame for the k-mean algorithm // clusterpara = new JFrame(); // create a frame for the k-mean algorithm // iterpara = new JFrame(); // create a frame for the LP set order box // lpsetorderpara = new JFrame(); // create a frame for the PF set order box // pfsetorderpara = new JFrame(); // create a frame for the KF set order box // kfsetorderpara = new JFrame(); set_meas_gain_frame = new JFrame(); set_state_gain_frame = new JFrame(); set_var_meas_noise_frame = new JFrame(); set_var_state_noise_frame = new JFrame(); // create a frame for interpoloation in the LP set order box // ipsetorderpara = new JFrame(); // create the textbox to view the help message // textArea = new JTextArea(); textArea.setLineWrap(true); textArea.setWrapStyleWord(true); textArea.setEditable(false); // make the text area scrollable // scrollPane = new JScrollPane(textArea); // set the scroll pane dismensions // scrollPane.setSize(new Dimension(400, 400)); scrollPane.setPreferredSize(new Dimension(400, 400)); scrollPane.setMinimumSize(new Dimension(400, 400)); scrollPane.setMaximumSize(new Dimension(400, 400)); // create a dismiss button for the text area // dismiss = new JButton(done); dismiss.setActionCommand(done); dismiss.addActionListener(this); // create a dismiss button for the text area // change = new JButton(refresh); change.setActionCommand(refresh); change.addActionListener(this); // create a button for setting color of class 1 // setdset1 = new JButton(changeset); setdset1.setActionCommand(changeset1); setdset1.addActionListener(this); // create a button for setting color of class 2 // setdset2 = new JButton(changeset); setdset2.setActionCommand(changeset2); setdset2.addActionListener(this); // create a button for setting color of class 3 // setdset3 = new JButton(changeset); setdset3.setActionCommand(changeset3); setdset3.addActionListener(this); // create a button for setting color of class 4 // setdset4 = new JButton(changeset); setdset4.setActionCommand(changeset4); setdset4.addActionListener(this); // create a button for setting color of class 4 // setcolors = new JButton(done); setcolors.setActionCommand(done); setcolors.addActionListener(this); // set the size of the color preview panels // paneldset1.setPreferredSize(new Dimension(30,20)); paneldset2.setPreferredSize(new Dimension(30,20)); paneldset3.setPreferredSize(new Dimension(30,20)); paneldset4.setPreferredSize(new Dimension(30,20)); // create a generate button for the gaussian distribution // applyb = new JButton(apply); applyb.setActionCommand(apply); applyb.addActionListener(this); // create a cancel button for the gaussian distribution // cancel = new JButton(destroy); cancel.setActionCommand(destroy); cancel.addActionListener(this); // create a initialize button for the k-means algorithm // initcluster = new JButton(setclusters); initcluster.setActionCommand(saveclusters); initcluster.addActionListener(this); // create a initialize button for the Linear Prediction algorithm // initlporder = new JButton(refresh); initlporder.setActionCommand(savelporders); initlporder.addActionListener(this); // create a initialize button for the Particle Filter algorithm // initpforder = new JButton(refresh); initpforder.setActionCommand(savepforders); initpforder.addActionListener(this); // create a initialize button for the Kalman Filter algorithm // initkforder = new JButton(refresh); initkforder.setActionCommand(savekforders); initkforder.addActionListener(this); // create a initialize button for the meas_gain Kalman algorithm // init_meas_gain = new JButton(refresh); init_meas_gain.setActionCommand(save_meas_gain); init_meas_gain.addActionListener(this); // create a initialize button for the state_gain Kalman algorithm // init_state_gain = new JButton(refresh); init_state_gain.setActionCommand(save_state_gain); init_state_gain.addActionListener(this); // create a initialize button for the var_meas_noise Kalman algorithm // init_var_meas_noise = new JButton(refresh); init_var_meas_noise.setActionCommand(save_var_meas_noise); init_var_meas_noise.addActionListener(this); // create a initialize button for the var_state_noise Kalman algorithm // init_var_state_noise = new JButton(refresh); init_var_state_noise.setActionCommand(save_var_state_noise); init_var_state_noise.addActionListener(this); // create a initialize button for the LP, PF and KF algorithm // initiporder = new JButton(refresh); initiporder.setActionCommand(saveiporders); initiporder.addActionListener(this); // create a initialize button for the LBG algorithm // inititer = new JButton(setiterations); inititer.setActionCommand(saveiterations); inititer.addActionListener(this); // add the components to frame // frame.getContentPane().add(scrollPane, BorderLayout.CENTER); frame.getContentPane().add(dismiss, BorderLayout.SOUTH); // set the container layout for the scale components // GridBagLayout gridbag = new GridBagLayout(); GridBagConstraints c = new GridBagConstraints(); // define constraints for all components // c.weightx = 1.0; c.weighty = 1.0; c.gridheight = 1; c.anchor = GridBagConstraints.WEST; c.fill = GridBagConstraints.HORIZONTAL; // add the components for the scale frame // c.gridx = 0; c.gridy = 1; c.gridwidth = 1; scale.getContentPane().setLayout(gridbag); gridbag.setConstraints(xMinLabel, c); scale.getContentPane().add(xMinLabel); c.gridx = 1; c.gridwidth = GridBagConstraints.REMAINDER; gridbag.setConstraints(xMinField, c); scale.getContentPane().add(xMinField); c.gridx = 0; c.gridy = 2; c.gridwidth = 1; gridbag.setConstraints(xMaxLabel, c); scale.getContentPane().add(xMaxLabel); c.gridx = 1; c.gridwidth = GridBagConstraints.REMAINDER; gridbag.setConstraints(xMaxField, c); scale.getContentPane().add(xMaxField); c.gridx = 0; c.gridy = 3; c.gridwidth = 1; gridbag.setConstraints(yMinLabel, c); scale.getContentPane().add(yMinLabel); c.gridx = 1; c.gridwidth = GridBagConstraints.REMAINDER; gridbag.setConstraints(yMinField, c); scale.getContentPane().add(yMinField); c.gridx = 0; c.gridy = 4; c.gridwidth = 1; gridbag.setConstraints(yMaxLabel, c); scale.getContentPane().add(yMaxLabel); c.gridx = 1; c.gridwidth = GridBagConstraints.REMAINDER; gridbag.setConstraints(yMaxField, c); scale.getContentPane().add(yMaxField); c.gridx = 0; c.gridy = 6; c.gridwidth = GridBagConstraints.REMAINDER; c.anchor = GridBagConstraints.CENTER; gridbag.setConstraints(change, c); scale.getContentPane().add(change); // set the container layout for the gaussian distribution // c = new GridBagConstraints(); c.weightx = 1.0; c.weighty = 1.0; c.gridheight = 1; c.fill = GridBagConstraints.NONE; // add the components for the set colors dlg // c.gridx = 0; c.gridy = 0; c.gridwidth = 2; setccolorsdlg.getContentPane().setLayout(gridbag); gridbag.setConstraints(colorselection, c); setccolorsdlg.getContentPane().add(colorselection); c.gridx = 0; c.gridy = 1; c.gridwidth = 1; c.anchor = GridBagConstraints.WEST; gridbag.setConstraints(dset1color, c); setccolorsdlg.getContentPane().add(dset1color); c.gridx = 1; c.gridy = 1; c.gridwidth = 1; gridbag.setConstraints(paneldset1, c); setccolorsdlg.getContentPane().add(paneldset1); c.gridx = 2; c.gridy = 1; c.gridwidth = 1; gridbag.setConstraints(setdset1, c); setccolorsdlg.getContentPane().add(setdset1); c.gridx = 0; c.gridy = 2; c.gridwidth = 1; c.anchor = GridBagConstraints.WEST; gridbag.setConstraints(dset2color, c); setccolorsdlg.getContentPane().add(dset2color); c.gridx = 1; c.gridy = 2; c.gridwidth = 1; gridbag.setConstraints(paneldset2, c); setccolorsdlg.getContentPane().add(paneldset2); c.gridx = 2; c.gridy = 2; c.gridwidth = 1; gridbag.setConstraints(setdset2, c); setccolorsdlg.getContentPane().add(setdset2); c.gridx = 0; c.gridy = 3; c.gridwidth = 1; c.anchor = GridBagConstraints.WEST; gridbag.setConstraints(dset3color, c); setccolorsdlg.getContentPane().add(dset3color); c.gridx = 1; c.gridy = 3; c.gridwidth = 1; gridbag.setConstraints(paneldset3, c); setccolorsdlg.getContentPane().add(paneldset3); c.gridx = 2; c.gridy = 3; c.gridwidth = 1; gridbag.setConstraints(setdset3, c); setccolorsdlg.getContentPane().add(setdset3); c.gridx = 0; c.gridy = 4; c.gridwidth = 1; c.anchor = GridBagConstraints.WEST; gridbag.setConstraints(dset4color, c); setccolorsdlg.getContentPane().add(dset4color); c.gridx = 1; c.gridy = 4; c.gridwidth = 1; gridbag.setConstraints(paneldset4, c); setccolorsdlg.getContentPane().add(paneldset4); c.gridx = 2; c.gridy = 4; c.gridwidth = 1; gridbag.setConstraints(setdset4, c); setccolorsdlg.getContentPane().add(setdset4); c.gridx = 0; c.gridy = 6; c.gridwidth = 3; c.insets = new Insets(7,7,7,7); c.anchor = GridBagConstraints.CENTER; gridbag.setConstraints(setcolors, c); setccolorsdlg.getContentPane().add(setcolors); // set the container layout for the k-means algorithm // c.weightx = 1.0; c.weighty = 1.0; c.gridheight = 1; c.anchor = GridBagConstraints.WEST; c.fill = GridBagConstraints.HORIZONTAL;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -