📄 bch_4148_4096_9_v100.cpp
字号:
/*
* File: bch_4148_4096_9_v100.cpp
* Title: Encoder/decoder for binary BCH codes in C (Version 3.1)
* Author: Robert Morelos-Zaragoza
* Date: August 1994
* Revised: June 13, 1997
*
* =============== Encoder/Decoder for binary BCH codes in C =================
*
* Version 1: Original program. The user provides the generator polynomial
* of the code (cumbersome!).
* Version 2: Computes the generator polynomial of the code.
* Version 3: No need to input the coefficients of a primitive polynomial of
* degree m, used to construct the Galois Field GF(2**m). The
* program now works for any binary BCH code of length such that:
* 2**(m-1) - 1 < length <= 2**m - 1
*
* Note: You may have to change the size of the arrays to make it work.
*
* The encoding and decoding methods used in this program are based on the
* book "Error Control Coding: Fundamentals and Applications", by Lin and
* Costello, Prentice Hall, 1983.
*
* Thanks to Patrick Boyle (pboyle@era.com) for his observation that 'bch2.c'
* did not work for lengths other than 2**m-1 which led to this new version.
* Portions of this program are from 'rs.c', a Reed-Solomon encoder/decoder
* in C, written by Simon Rockliff (simon@augean.ua.oz.au) on 21/9/89. The
* previous version of the BCH encoder/decoder in C, 'bch2.c', was written by
* Robert Morelos-Zaragoza (robert@spectra.eng.hawaii.edu) on 5/19/92.
*
* NOTE:
* The author is not responsible for any malfunctioning of
* this program, nor for any damage caused by it. Please include the
* original program along with these comments in any redistribution.
*
* For more information, suggestions, or other ideas on implementing error
* correcting codes, please contact me at:
*
* Robert Morelos-Zaragoza
* 5120 Woodway, Suite 7036
* Houston, Texas 77056
*
* email: r.morelos-zaragoza@ieee.org
*
* COPYRIGHT NOTICE: This computer program is free for non-commercial purposes.
* You may implement this program for any non-commercial application. You may
* also implement this program for commercial purposes, provided that you
* obtain my written permission. Any modification of this program is covered
* by this copyright.
*
* == Copyright (c) 1994-7, Robert Morelos-Zaragoza. All rights reserved. ==
*
* m = order of the Galois field GF(2**m)
* n = 2**m - 1 = size of the multiplicative group of GF(2**m)
* length = length of the BCH code
* t = error correcting capability (max. no. of errors the code corrects)
* d = 2*t + 1 = designed min. distance = no. of consecutive roots of g(x) + 1
* k = n - deg(g(x)) = dimension (no. of information bits/codeword) of the code
* p[] = coefficients of a primitive polynomial used to generate GF(2**m)
* g[] = coefficients of the generator polynomial, g(x)
* alpha_to [] = log table of GF(2**m)
* index_of[] = antilog table of GF(2**m)
* data[] = information bits = coefficients of data polynomial, i(x)
* bb[] = coefficients of redundancy polynomial x^(length-k) i(x) modulo g(x)
* numerr = number of errors
* errpos[] = error positions
* recd[] = coefficients of the received polynomial
* decerror = number of decoding errors (in _message_ positions)
*
*/
#include "stdafx.h"
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#define DIMENSION 13
#define GFSIZE 8191
#define MINPOLYNOMIAL {1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1}
#define INFOSIZE 4096
#define CORRECTCAPACITY 4
#define REDUNDANCYSIZE 52
#define CODESIZE (INFOSIZE+REDUNDANCYSIZE)
#define GENPOLYNOMIAL {1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1}
// code parameter.
int m = DIMENSION, n = GFSIZE, k = INFOSIZE, length = CODESIZE;
int p[DIMENSION+1] = MINPOLYNOMIAL;
int t = CORRECTCAPACITY;
int d = (2*CORRECTCAPACITY-1);
int g[REDUNDANCYSIZE+1] = GENPOLYNOMIAL;
// GF(2**m)
int alpha_to[GFSIZE+1], index_of[GFSIZE+1];
int data[INFOSIZE];
int bb[REDUNDANCYSIZE], recd[CODESIZE];
void generate_gf()
{
register int i, mask;
mask = 1;
alpha_to[m] = 0;
for (i = 0; i < m; i++) {
alpha_to[i] = mask;
index_of[alpha_to[i]] = i;
if (p[i] != 0)
alpha_to[m] ^= mask;
mask <<= 1;
}
index_of[alpha_to[m]] = m;
mask >>= 1;
for (i = m + 1; i < n; i++) {
if (alpha_to[i - 1] >= mask)
alpha_to[i] = alpha_to[m] ^ ((alpha_to[i - 1] ^ mask) << 1);
else
alpha_to[i] = alpha_to[i - 1] << 1;
index_of[alpha_to[i]] = i;
}
index_of[0] = -1;
}
void encode_bch()
{
register int i, j;
register int feedback;
for (i = 0; i < REDUNDANCYSIZE; i++)
bb[i] = 0;
for (i = k - 1; i >= 0; i--) {
feedback = data[i] ^ bb[REDUNDANCYSIZE - 1];
if (feedback != 0) {
for (j = REDUNDANCYSIZE - 1; j > 0; j--)
if (g[j] != 0)
bb[j] = bb[j - 1] ^ feedback;
else
bb[j] = bb[j - 1];
bb[0] = g[0] && feedback;
} else {
for (j = REDUNDANCYSIZE - 1; j > 0; j--)
bb[j] = bb[j - 1];
bb[0] = 0;
}
}
}
void
decode_bch()
/*
* Simon Rockliff's implementation of Berlekamp's algorithm.
*
* Assume we have received bits in recd[i], i=0..(n-1).
*
* Compute the 2*t syndromes by substituting alpha^i into rec(X) and
* evaluating, storing the syndromes in s[i], i=1..2t (leave s[0] zero) .
* Then we use the Berlekamp algorithm to find the error location polynomial
* elp[i].
*
* If the degree of the elp is >t, then we cannot correct all the errors, and
* we have detected an uncorrectable error pattern. We output the information
* bits uncorrected.
*
* If the degree of elp is <=t, we substitute alpha^i , i=1..n into the elp
* to get the roots, hence the inverse roots, the error location numbers.
* This step is usually called "Chien's search".
*
* If the number of errors located is not equal the degree of the elp, then
* the decoder assumes that there are more than t errors and cannot correct
* them, only detect them. We output the information bits uncorrected.
*/
{
register int i, j, u, q, t2, count = 0, syn_error = 0;
int elp[10][8], d[10], l[10], u_lu[10], s[9];
int root[200], loc[200], err[8], reg[201];
t2 = 2 * t;
/* first form the syndromes */
printf("S(x) = ");
for (i = 1; i <= t2; i++) {
s[i] = 0;
for (j = 0; j < length; j++)
if (recd[j] != 0)
s[i] ^= alpha_to[(i * j) % n];
if (s[i] != 0)
syn_error = 1; /* set error flag if non-zero syndrome */
/*
* Note: If the code is used only for ERROR DETECTION, then
* exit program here indicating the presence of errors.
*/
/* convert syndrome from polynomial form to index form */
s[i] = index_of[s[i]];
printf("%3d ", s[i]);
}
printf("\n");
if (syn_error) { /* if there are errors, try to correct them */
/*
* Compute the error location polynomial via the Berlekamp
* iterative algorithm. Following the terminology of Lin and
* Costello's book : d[u] is the 'mu'th discrepancy, where
* u='mu'+1 and 'mu' (the Greek letter!) is the step number
* ranging from -1 to 2*t (see L&C), l[u] is the degree of
* the elp at that step, and u_l[u] is the difference between
* the step number and the degree of the elp.
*/
/* initialise table entries */
d[0] = 0; /* index form */
d[1] = s[1]; /* index form */
elp[0][0] = 0; /* index form */
elp[1][0] = 1; /* polynomial form */
for (i = 1; i < t2; i++) {
elp[0][i] = -1; /* index form */
elp[1][i] = 0; /* polynomial form */
}
l[0] = 0;
l[1] = 0;
u_lu[0] = -1;
u_lu[1] = 0;
u = 0;
do {
u++;
if (d[u] == -1) {
l[u + 1] = l[u];
for (i = 0; i <= l[u]; i++) {
elp[u + 1][i] = elp[u][i];
elp[u][i] = index_of[elp[u][i]];
}
} else
/*
* search for words with greatest u_lu[q] for
* which d[q]!=0
*/
{
q = u - 1;
while ((d[q] == -1) && (q > 0))
q--;
/* have found first non-zero d[q] */
if (q > 0) {
j = q;
do {
j--;
if ((d[j] != -1) && (u_lu[q] < u_lu[j]))
q = j;
} while (j > 0);
}
/*
* have now found q such that d[u]!=0 and
* u_lu[q] is maximum
*/
/* store degree of new elp polynomial */
if (l[u] > l[q] + u - q)
l[u + 1] = l[u];
else
l[u + 1] = l[q] + u - q;
/* form new elp(x) */
for (i = 0; i < t2; i++)
elp[u + 1][i] = 0;
for (i = 0; i <= l[q]; i++)
if (elp[q][i] != -1)
elp[u + 1][i + u - q] =
alpha_to[(d[u] + n - d[q] + elp[q][i]) % n];
for (i = 0; i <= l[u]; i++) {
elp[u + 1][i] ^= elp[u][i];
elp[u][i] = index_of[elp[u][i]];
}
}
u_lu[u + 1] = u - l[u + 1];
/* form (u+1)th discrepancy */
if (u < t2) {
/* no discrepancy computed on last iteration */
if (s[u + 1] != -1)
d[u + 1] = alpha_to[s[u + 1]];
else
d[u + 1] = 0;
for (i = 1; i <= l[u + 1]; i++)
if ((s[u + 1 - i] != -1) && (elp[u + 1][i] != 0))
d[u + 1] ^= alpha_to[(s[u + 1 - i]
+ index_of[elp[u + 1][i]]) % n];
/* put d[u+1] into index form */
d[u + 1] = index_of[d[u + 1]];
}
} while ((u < t2) && (l[u + 1] <= t));
u++;
if (l[u] <= t) {/* Can correct errors */
/* put elp into index form */
for (i = 0; i <= l[u]; i++)
elp[u][i] = index_of[elp[u][i]];
printf("sigma(x) = ");
for (i = 0; i <= l[u]; i++)
printf("%3d ", elp[u][i]);
printf("\n");
printf("Roots: ");
/* Chien search: find roots of the error location polynomial */
for (i = 1; i <= l[u]; i++)
reg[i] = elp[u][i];
count = 0;
for (i = 1; i <= n; i++) {
q = 1;
for (j = 1; j <= l[u]; j++)
if (reg[j] != -1) {
reg[j] = (reg[j] + j) % n;
q ^= alpha_to[reg[j]];
}
if (!q) { /* store root and error
* location number indices */
root[count] = i;
loc[count] = n - i;
count++;
printf("%3d ", n - i);
}
}
printf("\n");
if (count == l[u])
/* no. roots = degree of elp hence <= t errors */
for (i = 0; i < l[u]; i++)
recd[loc[i]] ^= 1;
else /* elp has degree >t hence cannot solve */
printf("Incomplete decoding: errors detected\n");
}
}
}
int main(int argc, char* argv[])
{
int i;
FILE* datafile;
char ch;
int numerr = 3;
int errpos[CODESIZE] = {55, 97, 3543};
int decerror = 0;
generate_gf(); /* Construct the Galois Field GF(2**m) */
// get data
datafile = fopen("test_data_bin_512.txt", "r");
if(datafile == NULL)
{
printf("open file test_data_bin_512.txt failed!\n");
return 1;
}
for(i=0 ; (i<INFOSIZE)&&(feof(datafile)==0); i++)
{
while(feof(datafile)==0)
{
ch = fgetc(datafile);
if((ch=='0')||(ch=='1'))
{
data[i] = ch-'0';
break;
}
}
}
fclose(datafile);
encode_bch(); /* encode data */
/*
* recd[] are the coefficients of c(x) = x**(length-k)*data(x) + b(x)
*/
printf("c(x) = \n");
for (i = 0; i < REDUNDANCYSIZE; i++)
{
recd[i] = bb[i];
if (i && ((i % 64) == 0))
printf("\n");
printf("%1d", recd[i]);
}
printf("\n");
for (i = 0; i < INFOSIZE; i++)
{
recd[i + REDUNDANCYSIZE] = data[i];
if (i && ((i % 64) == 0))
printf("\n");
printf("%1d", recd[i + REDUNDANCYSIZE]);
}
printf("\n");
// add in the errors.
if (numerr)
for (i = 0; i < numerr; i++)
recd[errpos[i]] ^= 1;
printf("r(x) = \n");
for (i = 0; i < REDUNDANCYSIZE; i++)
{
if (i && ((i % 64) == 0))
printf("\n");
printf("%1d", recd[i]);
}
printf("\n");
for (i = 0; i < INFOSIZE; i++)
{
if (i && ((i % 64) == 0))
printf("\n");
printf("%1d", recd[i + REDUNDANCYSIZE]);
}
printf("\n");
decode_bch(); /* DECODE received codeword recv[] */
/*
* DECODING ERRORS? we compare only the data portion
*/
for (i = length - k; i < length; i++)
{
if (data[i - length + k] != recd[i])
{
decerror++;
printf("Dismatch positions %2d\n", i);
}
}
if (decerror)
printf("There were %d decoding errors in message positions\n", decerror);
else
printf("Succesful decoding\n");
return 0;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -