⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 imathvec.h

📁 image converter source code
💻 H
📖 第 1 页 / 共 2 页
字号:
/////////////////////////////////////////////////////////////////////////////// Copyright (c) 2004, Industrial Light & Magic, a division of Lucas// Digital Ltd. LLC// // All rights reserved.// // Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met:// *       Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.// *       Redistributions in binary form must reproduce the above// copyright notice, this list of conditions and the following disclaimer// in the documentation and/or other materials provided with the// distribution.// *       Neither the name of Industrial Light & Magic nor the names of// its contributors may be used to endorse or promote products derived// from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE./////////////////////////////////////////////////////////////////////////////#ifndef INCLUDED_IMATHVEC_H#define INCLUDED_IMATHVEC_H//----------------------------------------------------////	2D and 3D point/vector class templates!////----------------------------------------------------#include "ImathExc.h"#include "ImathLimits.h"#include "ImathMath.h"#include <iostream>#if (defined _WIN32 || defined _WIN64) && defined _MSC_VER// suppress exception specification warnings#pragma warning(disable:4290)#endifnamespace Imath {template <class T> class Vec2{  public:    //-------------------    // Access to elements    //-------------------    T			x, y;    T &			operator [] (int i);    const T &		operator [] (int i) const;    //-------------    // Constructors    //-------------    Vec2 ();                        // no initialization    explicit Vec2 (T a);            // (a a)    Vec2 (T a, T b);                // (a b)    //---------------------------------    // Copy constructors and assignment    //---------------------------------    Vec2 (const Vec2 &v);    template <class S> Vec2 (const Vec2<S> &v);    const Vec2 &	operator = (const Vec2 &v);    //----------------------    // Compatibility with Sb    //----------------------    template <class S>    void		setValue (S a, S b);    template <class S>    void		setValue (const Vec2<S> &v);    template <class S>    void		getValue (S &a, S &b) const;    template <class S>    void		getValue (Vec2<S> &v) const;    T *			getValue ();    const T *		getValue () const;        //---------    // Equality    //---------    template <class S>    bool		operator == (const Vec2<S> &v) const;    template <class S>    bool		operator != (const Vec2<S> &v) const;    //-----------------------------------------------------------------------    // Compare two vectors and test if they are "approximately equal":    //    // equalWithAbsError (v, e)    //    //	    Returns true if the coefficients of this and v are the same with    //	    an absolute error of no more than e, i.e., for all i    //    //      abs (this[i] - v[i]) <= e    //    // equalWithRelError (v, e)    //    //	    Returns true if the coefficients of this and v are the same with    //	    a relative error of no more than e, i.e., for all i    //    //      abs (this[i] - v[i]) <= e * abs (this[i])    //-----------------------------------------------------------------------    bool		equalWithAbsError (const Vec2<T> &v, T e) const;    bool		equalWithRelError (const Vec2<T> &v, T e) const;    //------------    // Dot product    //------------    T			dot (const Vec2 &v) const;    T			operator ^ (const Vec2 &v) const;    //------------------------------------------------    // Right-handed cross product, i.e. z component of    // Vec3 (this->x, this->y, 0) % Vec3 (v.x, v.y, 0)    //------------------------------------------------    T			cross (const Vec2 &v) const;    T			operator % (const Vec2 &v) const;    //------------------------    // Component-wise addition    //------------------------    const Vec2 &	operator += (const Vec2 &v);    Vec2		operator + (const Vec2 &v) const;    //---------------------------    // Component-wise subtraction    //---------------------------    const Vec2 &	operator -= (const Vec2 &v);    Vec2		operator - (const Vec2 &v) const;    //------------------------------------    // Component-wise multiplication by -1    //------------------------------------    Vec2		operator - () const;    const Vec2 &	negate ();    //------------------------------    // Component-wise multiplication    //------------------------------    const Vec2 &	operator *= (const Vec2 &v);    const Vec2 &	operator *= (T a);    Vec2		operator * (const Vec2 &v) const;    Vec2		operator * (T a) const;    //------------------------    // Component-wise division    //------------------------    const Vec2 &	operator /= (const Vec2 &v);    const Vec2 &	operator /= (T a);    Vec2		operator / (const Vec2 &v) const;    Vec2		operator / (T a) const;    //----------------------------------------------------------------    // Length and normalization:  If v.length() is 0.0, v.normalize()    // and v.normalized() produce a null vector; v.normalizeExc() and    // v.normalizedExc() throw a NullVecExc.    // v.normalizeNonNull() and v.normalizedNonNull() are slightly    // faster than the other normalization routines, but if v.length()    // is 0.0, the result is undefined.    //----------------------------------------------------------------    T			length () const;    T			length2 () const;    const Vec2 &	normalize ();           // modifies *this    const Vec2 &	normalizeExc () throw (Iex::MathExc);    const Vec2 &	normalizeNonNull ();    Vec2<T>		normalized () const;	// does not modify *this    Vec2<T>		normalizedExc () const throw (Iex::MathExc);    Vec2<T>		normalizedNonNull () const;    //--------------------------------------------------------    // Number of dimensions, i.e. number of elements in a Vec2    //--------------------------------------------------------    static unsigned int	dimensions() {return 2;}    //-------------------------------------------------    // Limitations of type T (see also class limits<T>)    //-------------------------------------------------    static T		baseTypeMin()		{return limits<T>::min();}    static T		baseTypeMax()		{return limits<T>::max();}    static T		baseTypeSmallest()	{return limits<T>::smallest();}    static T		baseTypeEpsilon()	{return limits<T>::epsilon();}    //--------------------------------------------------------------    // Base type -- in templates, which accept a parameter, V, which    // could be either a Vec2<T> or a Vec3<T>, you can refer to T as    // V::BaseType    //--------------------------------------------------------------    typedef T		BaseType;};template <class T> class Vec3{  public:    //-------------------    // Access to elements    //-------------------    T			x, y, z;    T &			operator [] (int i);    const T &		operator [] (int i) const;    //-------------    // Constructors    //-------------    Vec3 ();			   // no initialization    explicit Vec3 (T a);           // (a a a)    Vec3 (T a, T b, T c);	   // (a b c)    //---------------------------------    // Copy constructors and assignment    //---------------------------------    Vec3 (const Vec3 &v);    template <class S> Vec3 (const Vec3<S> &v);    const Vec3 &	operator = (const Vec3 &v);    //----------------------    // Compatibility with Sb    //----------------------    template <class S>    void		setValue (S a, S b, S c);    template <class S>    void		setValue (const Vec3<S> &v);    template <class S>    void		getValue (S &a, S &b, S &c) const;    template <class S>    void		getValue (Vec3<S> &v) const;    T *			getValue();    const T *		getValue() const;    //---------    // Equality    //---------    template <class S>    bool		operator == (const Vec3<S> &v) const;    template <class S>    bool		operator != (const Vec3<S> &v) const;    //-----------------------------------------------------------------------    // Compare two vectors and test if they are "approximately equal":    //    // equalWithAbsError (v, e)    //    //	    Returns true if the coefficients of this and v are the same with    //	    an absolute error of no more than e, i.e., for all i    //    //      abs (this[i] - v[i]) <= e    //    // equalWithRelError (v, e)    //    //	    Returns true if the coefficients of this and v are the same with    //	    a relative error of no more than e, i.e., for all i    //    //      abs (this[i] - v[i]) <= e * abs (this[i])    //-----------------------------------------------------------------------    bool		equalWithAbsError (const Vec3<T> &v, T e) const;    bool		equalWithRelError (const Vec3<T> &v, T e) const;    //------------    // Dot product    //------------    T			dot (const Vec3 &v) const;    T			operator ^ (const Vec3 &v) const;    //---------------------------    // Right-handed cross product    //---------------------------    Vec3		cross (const Vec3 &v) const;    const Vec3 &	operator %= (const Vec3 &v);    Vec3		operator % (const Vec3 &v) const;    //------------------------    // Component-wise addition    //------------------------    const Vec3 &	operator += (const Vec3 &v);    Vec3		operator + (const Vec3 &v) const;    //---------------------------    // Component-wise subtraction    //---------------------------    const Vec3 &	operator -= (const Vec3 &v);    Vec3		operator - (const Vec3 &v) const;    //------------------------------------    // Component-wise multiplication by -1    //------------------------------------    Vec3		operator - () const;    const Vec3 &	negate ();    //------------------------------    // Component-wise multiplication    //------------------------------    const Vec3 &	operator *= (const Vec3 &v);    const Vec3 &	operator *= (T a);    Vec3		operator * (const Vec3 &v) const;    Vec3		operator * (T a) const;    //------------------------    // Component-wise division    //------------------------    const Vec3 &	operator /= (const Vec3 &v);    const Vec3 &	operator /= (T a);    Vec3		operator / (const Vec3 &v) const;    Vec3		operator / (T a) const;    //----------------------------------------------------------------    // Length and normalization:  If v.length() is 0.0, v.normalize()    // and v.normalized() produce a null vector; v.normalizeExc() and    // v.normalizedExc() throw a NullVecExc.    // v.normalizeNonNull() and v.normalizedNonNull() are slightly    // faster than the other normalization routines, but if v.length()    // is 0.0, the result is undefined.    //----------------------------------------------------------------    T			length () const;    T			length2 () const;    const Vec3 &	normalize ();           // modifies *this    const Vec3 &	normalizeExc () throw (Iex::MathExc);    const Vec3 &	normalizeNonNull ();    Vec3<T>		normalized () const;	// does not modify *this    Vec3<T>		normalizedExc () const throw (Iex::MathExc);    Vec3<T>		normalizedNonNull () const;    //--------------------------------------------------------    // Number of dimensions, i.e. number of elements in a Vec3    //--------------------------------------------------------    static unsigned int	dimensions() {return 3;}    //-------------------------------------------------    // Limitations of type T (see also class limits<T>)    //-------------------------------------------------    static T		baseTypeMin()		{return limits<T>::min();}    static T		baseTypeMax()		{return limits<T>::max();}    static T		baseTypeSmallest()	{return limits<T>::smallest();}    static T		baseTypeEpsilon()	{return limits<T>::epsilon();}    //--------------------------------------------------------------    // Base type -- in templates, which accept a parameter, V, which    // could be either a Vec2<T> or a Vec3<T>, you can refer to T as    // V::BaseType    //--------------------------------------------------------------    typedef T		BaseType;};//--------------// Stream output//--------------template <class T>std::ostream &	operator << (std::ostream &s, const Vec2<T> &v);template <class T>std::ostream &	operator << (std::ostream &s, const Vec3<T> &v);//----------------------------------------------------// Reverse multiplication: S * Vec2<T> and S * Vec3<T>//----------------------------------------------------template <class T> Vec2<T>	operator * (T a, const Vec2<T> &v);template <class T> Vec3<T>	operator * (T a, const Vec3<T> &v);//-------------------------// Typedefs for convenience//-------------------------typedef Vec2 <short>  V2s;typedef Vec2 <int>    V2i;typedef Vec2 <float>  V2f;typedef Vec2 <double> V2d;typedef Vec3 <short>  V3s;typedef Vec3 <int>    V3i;typedef Vec3 <float>  V3f;typedef Vec3 <double> V3d;//-------------------------------------------------------------------// Specializations for Vec2<short>, Vec2<int>, Vec3<short>, Vec3<int>//-------------------------------------------------------------------// Vec2<short>template <> shortVec2<short>::length () const;template <> const Vec2<short> &Vec2<short>::normalize ();template <> const Vec2<short> &Vec2<short>::normalizeExc () throw (Iex::MathExc);template <> const Vec2<short> &Vec2<short>::normalizeNonNull ();template <> Vec2<short>Vec2<short>::normalized () const;template <> Vec2<short>Vec2<short>::normalizedExc () const throw (Iex::MathExc);template <> Vec2<short>Vec2<short>::normalizedNonNull () const;// Vec2<int>template <> intVec2<int>::length () const;template <> const Vec2<int> &Vec2<int>::normalize ();template <> const Vec2<int> &Vec2<int>::normalizeExc () throw (Iex::MathExc);template <> const Vec2<int> &Vec2<int>::normalizeNonNull ();template <> Vec2<int>Vec2<int>::normalized () const;template <> Vec2<int>Vec2<int>::normalizedExc () const throw (Iex::MathExc);template <> Vec2<int>Vec2<int>::normalizedNonNull () const;// Vec3<short>template <> shortVec3<short>::length () const;template <> const Vec3<short> &Vec3<short>::normalize ();template <> const Vec3<short> &Vec3<short>::normalizeExc () throw (Iex::MathExc);template <> const Vec3<short> &Vec3<short>::normalizeNonNull ();template <> Vec3<short>Vec3<short>::normalized () const;template <> Vec3<short>Vec3<short>::normalizedExc () const throw (Iex::MathExc);template <> Vec3<short>Vec3<short>::normalizedNonNull () const;// Vec3<int>template <> intVec3<int>::length () const;template <> const Vec3<int> &Vec3<int>::normalize ();template <> const Vec3<int> &Vec3<int>::normalizeExc () throw (Iex::MathExc);template <> const Vec3<int> &Vec3<int>::normalizeNonNull ();template <> Vec3<int>Vec3<int>::normalized () const;template <> Vec3<int>Vec3<int>::normalizedExc () const throw (Iex::MathExc);template <> Vec3<int>Vec3<int>::normalizedNonNull () const;//------------------------// Implementation of Vec2://------------------------template <class T>inline T &Vec2<T>::operator [] (int i){    return (&x)[i];}template <class T>inline const T &Vec2<T>::operator [] (int i) const{    return (&x)[i];}template <class T>inlineVec2<T>::Vec2 (){    // empty}template <class T>inlineVec2<T>::Vec2 (T a){    x = y = a;}template <class T>inlineVec2<T>::Vec2 (T a, T b){    x = a;    y = b;}template <class T>inlineVec2<T>::Vec2 (const Vec2 &v){    x = v.x;    y = v.y;}template <class T>template <class S>inlineVec2<T>::Vec2 (const Vec2<S> &v){    x = T (v.x);    y = T (v.y);}template <class T>inline const Vec2<T> &Vec2<T>::operator = (const Vec2 &v){    x = v.x;    y = v.y;    return *this;}template <class T>template <class S>inline voidVec2<T>::setValue (S a, S b){    x = T (a);    y = T (b);}template <class T>template <class S>inline voidVec2<T>::setValue (const Vec2<S> &v){    x = T (v.x);    y = T (v.y);}template <class T>template <class S>inline voidVec2<T>::getValue (S &a, S &b) const{    a = S (x);    b = S (y);}template <class T>template <class S>inline voidVec2<T>::getValue (Vec2<S> &v) const{    v.x = S (x);    v.y = S (y);}template <class T>inline T *Vec2<T>::getValue(){    return (T *) &x;}template <class T>inline const T *Vec2<T>::getValue() const{    return (const T *) &x;}template <class T>template <class S>inline boolVec2<T>::operator == (const Vec2<S> &v) const{    return x == v.x && y == v.y;}template <class T>template <class S>inline boolVec2<T>::operator != (const Vec2<S> &v) const{    return x != v.x || y != v.y;}template <class T>bool

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -