⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 imathroots.h

📁 image converter source code
💻 H
字号:
/////////////////////////////////////////////////////////////////////////////// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas// Digital Ltd. LLC// // All rights reserved.// // Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met:// *       Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.// *       Redistributions in binary form must reproduce the above// copyright notice, this list of conditions and the following disclaimer// in the documentation and/or other materials provided with the// distribution.// *       Neither the name of Industrial Light & Magic nor the names of// its contributors may be used to endorse or promote products derived// from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE./////////////////////////////////////////////////////////////////////////////#ifndef INCLUDED_IMATHROOTS_H#define INCLUDED_IMATHROOTS_H//---------------------------------------------------------------------////	Functions to solve linear, quadratic or cubic equations////---------------------------------------------------------------------#include <ImathMath.h>#include <complex>namespace Imath {//--------------------------------------------------------------------------// Find the real solutions of a linear, quadratic or cubic equation:////   	function				   equation solved////   solveLinear (a, b, x)		                      a * x + b == 0//   solveQuadratic (a, b, c, x)	            a * x*x + b * x + c == 0//   solveNormalizedCubic (r, s, t, x)	    x*x*x + r * x*x + s * x + t == 0//   solveCubic (a, b, c, d, x)		a * x*x*x + b * x*x + c * x + d == 0//// Return value:////	 3	three real solutions, stored in x[0], x[1] and x[2]//	 2	two real solutions, stored in x[0] and x[1]//	 1	one real solution, stored in x[1]//	 0	no real solutions//	-1	all real numbers are solutions//// Notes:////    * It is possible that an equation has real solutions, but that the//	solutions (or some intermediate result) are not representable.//	In this case, either some of the solutions returned are invalid//	(nan or infinity), or, if floating-point exceptions have been//	enabled with Iex::mathExcOn(), an Iex::MathExc exception is//	thrown.////    * Cubic equations are solved using Cardano's Formula; even though//	only real solutions are produced, some intermediate results are//	complex (std::complex<T>).////--------------------------------------------------------------------------template <class T> int	solveLinear (T a, T b, T &x);template <class T> int	solveQuadratic (T a, T b, T c, T x[2]);template <class T> int	solveNormalizedCubic (T r, T s, T t, T x[3]);template <class T> int	solveCubic (T a, T b, T c, T d, T x[3]);//---------------// Implementation//---------------template <class T>intsolveLinear (T a, T b, T &x){    if (a != 0)    {	x = -b / a;	return 1;    }    else if (b != 0)    {	return 0;    }    else    {	return -1;    }}template <class T>intsolveQuadratic (T a, T b, T c, T x[2]){    if (a == 0)    {	return solveLinear (b, c, x[0]);    }    else    {	T D = b * b - 4 * a * c;	if (D > 0)	{	    T s = Math<T>::sqrt (D);	    x[0] = (-b + s) / (2 * a);	    x[1] = (-b - s) / (2 * a);	    return 2;	}	if (D == 0)	{	    x[0] = -b / (2 * a);	    return 1;	}	else	{	    return 0;	}    }}template <class T>intsolveNormalizedCubic (T r, T s, T t, T x[3]){    T p  = (3 * s - r * r) / 3;    T q  = 2 * r * r * r / 27 - r * s / 3 + t;    T p3 = p / 3;    T q2 = q / 2;    T D  = p3 * p3 * p3 + q2 * q2;    if (D == 0 && p3 == 0)    {	x[0] = -r / 3;	x[1] = -r / 3;	x[2] = -r / 3;	return 1;    }    std::complex<T> u = std::pow (-q / 2 + std::sqrt (std::complex<T> (D)),				  T (1) / T (3));    std::complex<T> v = -p / (T (3) * u);    const T sqrt3 = T (1.73205080756887729352744634150587); // enough digits							    // for long double    std::complex<T> y0 (u + v);    std::complex<T> y1 (-(u + v) / T (2) +			 (u - v) / T (2) * std::complex<T> (0, sqrt3));    std::complex<T> y2 (-(u + v) / T (2) -			 (u - v) / T (2) * std::complex<T> (0, sqrt3));    if (D > 0)    {	x[0] = y0.real() - r / 3;	return 1;    }    else if (D == 0)    {	x[0] = y0.real() - r / 3;	x[1] = y1.real() - r / 3;	return 2;    }    else    {	x[0] = y0.real() - r / 3;	x[1] = y1.real() - r / 3;	x[2] = y2.real() - r / 3;	return 3;    }}template <class T>intsolveCubic (T a, T b, T c, T d, T x[3]){    if (a == 0)    {	return solveQuadratic (b, c, d, x);    }    else    {	return solveNormalizedCubic (b / a, c / a, d / a, x);    }}} // namespace Imath#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -