📄 imathroots.h
字号:
/////////////////////////////////////////////////////////////////////////////// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas// Digital Ltd. LLC// // All rights reserved.// // Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met:// * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above// copyright notice, this list of conditions and the following disclaimer// in the documentation and/or other materials provided with the// distribution.// * Neither the name of Industrial Light & Magic nor the names of// its contributors may be used to endorse or promote products derived// from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE./////////////////////////////////////////////////////////////////////////////#ifndef INCLUDED_IMATHROOTS_H#define INCLUDED_IMATHROOTS_H//---------------------------------------------------------------------//// Functions to solve linear, quadratic or cubic equations////---------------------------------------------------------------------#include <ImathMath.h>#include <complex>namespace Imath {//--------------------------------------------------------------------------// Find the real solutions of a linear, quadratic or cubic equation://// function equation solved//// solveLinear (a, b, x) a * x + b == 0// solveQuadratic (a, b, c, x) a * x*x + b * x + c == 0// solveNormalizedCubic (r, s, t, x) x*x*x + r * x*x + s * x + t == 0// solveCubic (a, b, c, d, x) a * x*x*x + b * x*x + c * x + d == 0//// Return value://// 3 three real solutions, stored in x[0], x[1] and x[2]// 2 two real solutions, stored in x[0] and x[1]// 1 one real solution, stored in x[1]// 0 no real solutions// -1 all real numbers are solutions//// Notes://// * It is possible that an equation has real solutions, but that the// solutions (or some intermediate result) are not representable.// In this case, either some of the solutions returned are invalid// (nan or infinity), or, if floating-point exceptions have been// enabled with Iex::mathExcOn(), an Iex::MathExc exception is// thrown.//// * Cubic equations are solved using Cardano's Formula; even though// only real solutions are produced, some intermediate results are// complex (std::complex<T>).////--------------------------------------------------------------------------template <class T> int solveLinear (T a, T b, T &x);template <class T> int solveQuadratic (T a, T b, T c, T x[2]);template <class T> int solveNormalizedCubic (T r, T s, T t, T x[3]);template <class T> int solveCubic (T a, T b, T c, T d, T x[3]);//---------------// Implementation//---------------template <class T>intsolveLinear (T a, T b, T &x){ if (a != 0) { x = -b / a; return 1; } else if (b != 0) { return 0; } else { return -1; }}template <class T>intsolveQuadratic (T a, T b, T c, T x[2]){ if (a == 0) { return solveLinear (b, c, x[0]); } else { T D = b * b - 4 * a * c; if (D > 0) { T s = Math<T>::sqrt (D); x[0] = (-b + s) / (2 * a); x[1] = (-b - s) / (2 * a); return 2; } if (D == 0) { x[0] = -b / (2 * a); return 1; } else { return 0; } }}template <class T>intsolveNormalizedCubic (T r, T s, T t, T x[3]){ T p = (3 * s - r * r) / 3; T q = 2 * r * r * r / 27 - r * s / 3 + t; T p3 = p / 3; T q2 = q / 2; T D = p3 * p3 * p3 + q2 * q2; if (D == 0 && p3 == 0) { x[0] = -r / 3; x[1] = -r / 3; x[2] = -r / 3; return 1; } std::complex<T> u = std::pow (-q / 2 + std::sqrt (std::complex<T> (D)), T (1) / T (3)); std::complex<T> v = -p / (T (3) * u); const T sqrt3 = T (1.73205080756887729352744634150587); // enough digits // for long double std::complex<T> y0 (u + v); std::complex<T> y1 (-(u + v) / T (2) + (u - v) / T (2) * std::complex<T> (0, sqrt3)); std::complex<T> y2 (-(u + v) / T (2) - (u - v) / T (2) * std::complex<T> (0, sqrt3)); if (D > 0) { x[0] = y0.real() - r / 3; return 1; } else if (D == 0) { x[0] = y0.real() - r / 3; x[1] = y1.real() - r / 3; return 2; } else { x[0] = y0.real() - r / 3; x[1] = y1.real() - r / 3; x[2] = y2.real() - r / 3; return 3; }}template <class T>intsolveCubic (T a, T b, T c, T d, T x[3]){ if (a == 0) { return solveQuadratic (b, c, d, x); } else { return solveNormalizedCubic (b / a, c / a, d / a, x); }}} // namespace Imath#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -