⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 imathmath.h

📁 image converter source code
💻 H
字号:
/////////////////////////////////////////////////////////////////////////////// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas// Digital Ltd. LLC// // All rights reserved.// // Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met:// *       Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.// *       Redistributions in binary form must reproduce the above// copyright notice, this list of conditions and the following disclaimer// in the documentation and/or other materials provided with the// distribution.// *       Neither the name of Industrial Light & Magic nor the names of// its contributors may be used to endorse or promote products derived// from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE./////////////////////////////////////////////////////////////////////////////#ifndef INCLUDED_IMATHMATH_H#define INCLUDED_IMATHMATH_H//----------------------------------------------------------------------------////	ImathMath.h////	This file contains template functions which call the double-//	precision math functions defined in math.h (sin(), sqrt(),//	exp() etc.), with specializations that call the faster//	single-precision versions (sinf(), sqrtf(), expf() etc.)//	when appropriate.////	Example:////	    double x = Math<double>::sqrt (3);	// calls ::sqrt(double);//	    float  y = Math<float>::sqrt (3);	// calls ::sqrtf(float);////	When would I want to use this?////	You may be writing a template which needs to call some function//	defined in math.h, for example to extract a square root, but you//	don't know whether to call the single- or the double-precision//	version of this function (sqrt() or sqrtf()):////	    template <class T>//	    T//	    glorp (T x)//	    {//		return sqrt (x + 1);		// should call ::sqrtf(float)//	    }					// if x is a float, but we//						// don't know if it is////	Using the templates in this file, you can make sure that//	the appropriate version of the math function is called:////	    template <class T>//	    T//	    glorp (T x, T y)//	    {//		return Math<T>::sqrt (x + 1);	// calls ::sqrtf(float) if x//	    }					// is a float, ::sqrt(double)//	    					// otherwise////----------------------------------------------------------------------------#include "ImathPlatform.h"#include "ImathLimits.h"#include <math.h>namespace Imath {template <class T>struct Math{   static T	acos  (T x)		{return ::acos (double(x));}	   static T	asin  (T x)		{return ::asin (double(x));}   static T	atan  (T x)		{return ::atan (double(x));}   static T	atan2 (T x, T y)	{return ::atan2 (double(x), double(y));}   static T	cos   (T x)		{return ::cos (double(x));}   static T	sin   (T x)		{return ::sin (double(x));}   static T	tan   (T x)		{return ::tan (double(x));}   static T	cosh  (T x)		{return ::cosh (double(x));}   static T	sinh  (T x)		{return ::sinh (double(x));}   static T	tanh  (T x)		{return ::tanh (double(x));}   static T	exp   (T x)		{return ::exp (double(x));}   static T	log   (T x)		{return ::log (double(x));}   static T	log10 (T x)		{return ::log10 (double(x));}   static T	modf  (T x, T *iptr)   {        double ival;        T rval( ::modf (double(x),&ival));	*iptr = ival;	return rval;   }   static T	pow   (T x, T y)	{return ::pow (double(x), double(y));}   static T	sqrt  (T x)		{return ::sqrt (double(x));}   static T	ceil  (T x)		{return ::ceil (double(x));}   static T	fabs  (T x)		{return ::fabs (double(x));}   static T	floor (T x)		{return ::floor (double(x));}   static T	fmod  (T x, T y)	{return ::fmod (double(x), double(y));}   static T	hypot (T x, T y)	{return ::hypot (double(x), double(y));}};template <>struct Math<float>{   static float	acos  (float x)			{return ::acosf (x);}	   static float	asin  (float x)			{return ::asinf (x);}   static float	atan  (float x)			{return ::atanf (x);}   static float	atan2 (float x, float y)	{return ::atan2f (x, y);}   static float	cos   (float x)			{return ::cosf (x);}   static float	sin   (float x)			{return ::sinf (x);}   static float	tan   (float x)			{return ::tanf (x);}   static float	cosh  (float x)			{return ::coshf (x);}   static float	sinh  (float x)			{return ::sinhf (x);}   static float	tanh  (float x)			{return ::tanhf (x);}   static float	exp   (float x)			{return ::expf (x);}   static float	log   (float x)			{return ::logf (x);}   static float	log10 (float x)			{return ::log10f (x);}   static float	modf  (float x, float *y)	{return ::modff (x, y);}   static float	pow   (float x, float y)	{return ::powf (x, y);}   static float	sqrt  (float x)			{return ::sqrtf (x);}   static float	ceil  (float x)			{return ::ceilf (x);}   static float	fabs  (float x)			{return ::fabsf (x);}   static float	floor (float x)			{return ::floorf (x);}   static float	fmod  (float x, float y)	{return ::fmodf (x, y);}#if !defined(_MSC_VER)   static float	hypot (float x, float y)	{return ::hypotf (x, y);}#else   static float hypot (float x, float y)	{return ::sqrtf(x*x + y*y);}#endif};//--------------------------------------------------------------------------// Don Hatch's version of sin(x)/x, which is accurate for very small x.// Returns 1 for x == 0.//--------------------------------------------------------------------------template <class T>inline Tsinx_over_x (T x){    if (x * x < limits<T>::epsilon())	return T (1);    else	return Math<T>::sin (x) / x;}//--------------------------------------------------------------------------// Compare two numbers and test if they are "approximately equal"://// equalWithAbsError (x1, x2, e)////	Returns true if x1 is the same as x2 with an absolute error of//	no more than e,//	//	abs (x1 - x2) <= e//// equalWithRelError (x1, x2, e)////	Returns true if x1 is the same as x2 with an relative error of//	no more than e,//	//	abs (x1 - x2) <= e * x1////--------------------------------------------------------------------------template <class T>inline boolequalWithAbsError (T x1, T x2, T e){    return ((x1 > x2)? x1 - x2: x2 - x1) <= e;}template <class T>inline boolequalWithRelError (T x1, T x2, T e){    return ((x1 > x2)? x1 - x2: x2 - x1) <= e * ((x1 > 0)? x1: -x1);}} // namespace Imath#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -