⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 half.h

📁 image converter source code
💻 H
📖 第 1 页 / 共 2 页
字号:
/////////////////////////////////////////////////////////////////////////////// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas// Digital Ltd. LLC// // All rights reserved.// // Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met:// *       Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.// *       Redistributions in binary form must reproduce the above// copyright notice, this list of conditions and the following disclaimer// in the documentation and/or other materials provided with the// distribution.// *       Neither the name of Industrial Light & Magic nor the names of// its contributors may be used to endorse or promote products derived// from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE./////////////////////////////////////////////////////////////////////////////// Primary authors://     Florian Kainz <kainz@ilm.com>//     Rod Bogart <rgb@ilm.com>//---------------------------------------------------------------------------////	half -- a 16-bit floating point number class:////	Type half can represent positive and negative numbers whose//	magnitude is between roughly 6.1e-5 and 6.5e+4 with a relative//	error of 9.8e-4; numbers smaller than 6.1e-5 can be represented//	with an absolute error of 6.0e-8.  All integers from -2048 to//	+2048 can be represented exactly.////	Type half behaves (almost) like the built-in C++ floating point//	types.  In arithmetic expressions, half, float and double can be//	mixed freely.  Here are a few examples:////	    half a (3.5);//	    float b (a + sqrt (a));//	    a += b;//	    b += a;//	    b = a + 7;////	Conversions from half to float are lossless; all half numbers//	are exactly representable as floats.////	Conversions from float to half may not preserve the float's//	value exactly.  If a float is not representable as a half, the//	float value is rounded to the nearest representable half.  If//	a float value is exactly in the middle between the two closest//	representable half values, then the float value is rounded to//	the half with the greater magnitude.////	Overflows during float-to-half conversions cause arithmetic//	exceptions.  An overflow occurs when the float value to be//	converted is too large to be represented as a half, or if the//	float value is an infinity or a NAN.////	The implementation of type half makes the following assumptions//	about the implementation of the built-in C++ types:////	    float is an IEEE 754 single-precision number//	    sizeof (float) == 4//	    sizeof (unsigned int) == sizeof (float)//	    alignof (unsigned int) == alignof (float)//	    sizeof (unsigned short) == 2////---------------------------------------------------------------------------#ifndef _HALF_H_#define _HALF_H_#include <iostream>class half{  public:    //-------------    // Constructors    //-------------    half ();			// no initialization    half (float f);    //--------------------    // Conversion to float    //--------------------    operator		float () const;    //------------    // Unary minus    //------------    half		operator - () const;    //-----------    // Assignment    //-----------    half &		operator = (half  h);    half &		operator = (float f);    half &		operator += (half  h);    half &		operator += (float f);    half &		operator -= (half  h);    half &		operator -= (float f);    half &		operator *= (half  h);    half &		operator *= (float f);    half &		operator /= (half  h);    half &		operator /= (float f);    //---------------------------------------------------------    // Round to n-bit precision (n should be between 0 and 10).    // After rounding, the significand's 10-n least significant    // bits will be zero.    //---------------------------------------------------------    half		round (unsigned int n) const;    //--------------------------------------------------------------------    // Classification:    //    //	h.isFinite()		returns true if h is a normalized number,    //				a denormalized number or zero    //    //	h.isNormalized()	returns true if h is a normalized number    //    //	h.isDenormalized()	returns true if h is a denormalized number    //    //	h.isZero()		returns true if h is zero    //    //	h.isNan()		returns true if h is a NAN    //    //	h.isInfinity()		returns true if h is a positive    //				or a negative infinity    //    //	h.isNegative()		returns true if the sign bit of h    //				is set (negative)    //--------------------------------------------------------------------    bool		isFinite () const;    bool		isNormalized () const;    bool		isDenormalized () const;    bool		isZero () const;    bool		isNan () const;    bool		isInfinity () const;    bool		isNegative () const;    //--------------------------------------------    // Special values    //    //	posInf()	returns +infinity    //    //	negInf()	returns -infinity    //    //	qNan()		returns a NAN with the bit    //			pattern 0111111111111111    //    //	sNan()		returns a NAN with the bit    //			pattern 0111110111111111    //--------------------------------------------    static half		posInf ();    static half		negInf ();    static half		qNan ();    static half		sNan ();    //--------------------------------------    // Access to the internal representation    //--------------------------------------    unsigned short	bits () const;    void		setBits (unsigned short bits);  public:    union uif    {	unsigned int	i;	float		f;    };  private:    static short	convert (int i);    static float	overflow ();    unsigned short	_h;    //---------------------------------------------------    // Windows dynamic libraries don't like static    // member variables.    //---------------------------------------------------#ifndef OPENEXR_DLL    static const uif	        _toFloat[1 << 16];    static const unsigned short _eLut[1 << 9];#endif};#if defined(OPENEXR_DLL)    //--------------------------------------    // Lookup tables defined for Windows DLL    //--------------------------------------    #if defined(HALF_EXPORTS)        extern __declspec(dllexport) half::uif		_toFloat[1 << 16];        extern __declspec(dllexport) unsigned short	_eLut[1 << 9];    #else        extern __declspec(dllimport) half::uif		_toFloat[1 << 16];        extern __declspec(dllimport) unsigned short	_eLut[1 << 9];    #endif#endif//-----------// Stream I/O//-----------std::ostream &		operator << (std::ostream &os, half  h);std::istream &		operator >> (std::istream &is, half &h);//----------// Debugging//----------void			printBits   (std::ostream &os, half  h);void			printBits   (std::ostream &os, float f);void			printBits   (char  c[19], half  h);void			printBits   (char  c[35], float f);//-------------------------------------------------------------------------// Limits//// Visual C++ will complain if HALF_MIN, HALF_NRM_MIN etc. are not float// constants, but at least one other compiler (gcc 2.96) produces incorrect// results if they are.//-------------------------------------------------------------------------#if (defined _WIN32 || defined _WIN64) && defined _MSC_VER  #define HALF_MIN	5.96046448e-08f	// Smallest positive half  #define HALF_NRM_MIN	6.10351562e-05f	// Smallest positive normalized half  #define HALF_MAX	65504.0f	// Largest positive half  #define HALF_EPSILON	0.00097656f	// Smallest positive e for which					// half (1.0 + e) != half (1.0)#else  #define HALF_MIN	5.96046448e-08	// Smallest positive half  #define HALF_NRM_MIN	6.10351562e-05	// Smallest positive normalized half  #define HALF_MAX	65504.0		// Largest positive half  #define HALF_EPSILON	0.00097656	// Smallest positive e for which					// half (1.0 + e) != half (1.0)#endif#define HALF_MANT_DIG	11		// Number of digits in mantissa					// (significand + hidden leading 1)#define HALF_DIG	2		// Number of base 10 digits that					// can be represented without change#define HALF_RADIX	2		// Base of the exponent#define HALF_MIN_EXP	-13		// Minimum negative integer such that					// HALF_RADIX raised to the power of					// one less than that integer is a					// normalized half#define HALF_MAX_EXP	16		// Maximum positive integer such that					// HALF_RADIX raised to the power of					// one less than that integer is a					// normalized half#define HALF_MIN_10_EXP	-4		// Minimum positive integer such					// that 10 raised to that power is					// a normalized half#define HALF_MAX_10_EXP	4		// Maximum positive integer such					// that 10 raised to that power is					// a normalized half//---------------------------------------------------------------------------//// Implementation --//// Representation of a float:////	We assume that a float, f, is an IEEE 754 single-precision//	floating point number, whose bits are arranged as follows:////	    31 (msb)//	    | //	    | 30     23//	    | |      | //	    | |      | 22                    0 (lsb)//	    | |      | |                     |//	    X XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX////	    s e        m////	S is the sign-bit, e is the exponent and m is the significand.////	If e is between 1 and 254, f is a normalized number:////	            s    e-127//	    f = (-1)  * 2      * 1.m////	If e is 0, and m is not zero, f is a denormalized number:////	            s    -126//	    f = (-1)  * 2      * 0.m////	If e and m are both zero, f is zero:////	    f = 0.0////	If e is 255, f is an "infinity" or "not a number" (NAN),//	depending on whether m is zero or not.////	Examples:////	    0 00000000 00000000000000000000000 = 0.0//	    0 01111110 00000000000000000000000 = 0.5//	    0 01111111 00000000000000000000000 = 1.0//	    0 10000000 00000000000000000000000 = 2.0//	    0 10000000 10000000000000000000000 = 3.0//	    1 10000101 11110000010000000000000 = -124.0625//	    0 11111111 00000000000000000000000 = +infinity//	    1 11111111 00000000000000000000000 = -infinity//	    0 11111111 10000000000000000000000 = NAN//	    1 11111111 11111111111111111111111 = NAN//// Representation of a half:////	Here is the bit-layout for a half number, h:////	    15 (msb)//	    | //	    | 14  10//	    | |   |//	    | |   | 9        0 (lsb)//	    | |   | |        |//	    X XXXXX XXXXXXXXXX////	    s e     m////	S is the sign-bit, e is the exponent and m is the significand.////	If e is between 1 and 30, h is a normalized number:////	            s    e-15//	    h = (-1)  * 2     * 1.m//

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -