📄 drms.c
字号:
{
for( t = 0; t < 4; t++ )
{
p_tmp[ t ] = AES_XOR_ROR( p_aes_itable, p_wtxt );
}
for( t = 0; t < 4; t++ )
{
p_wtxt[ t ] = p_tmp[ t ]
^ p_aes->pp_dec_keys[ (AES_KEY_COUNT - 1) - i_round ][ t ];
}
}
/* Final round (9) */
for( t = 0; t < 4; t++ )
{
p_dest[ t ] = AES_XOR_ROR( p_aes_decrypt, p_wtxt );
p_dest[ t ] ^= p_aes->pp_dec_keys[ 0 ][ t ];
}
}
/*****************************************************************************
* InitMD5: initialise an MD5 message
*****************************************************************************
* The MD5 message-digest algorithm is described in RFC 1321
*****************************************************************************/
static void InitMD5( struct md5_s *p_md5 )
{
p_md5->p_digest[ 0 ] = 0x67452301;
p_md5->p_digest[ 1 ] = 0xefcdab89;
p_md5->p_digest[ 2 ] = 0x98badcfe;
p_md5->p_digest[ 3 ] = 0x10325476;
memset( p_md5->p_data, 0, 64 );
p_md5->i_bits = 0;
}
/*****************************************************************************
* AddMD5: add i_len bytes to an MD5 message
*****************************************************************************/
static void AddMD5( struct md5_s *p_md5, const uint8_t *p_src, uint32_t i_len )
{
unsigned int i_current; /* Current bytes in the spare buffer */
unsigned int i_offset = 0;
i_current = (p_md5->i_bits / 8) & 63;
p_md5->i_bits += 8 * i_len;
/* If we can complete our spare buffer to 64 bytes, do it and add the
* resulting buffer to the MD5 message */
if( i_len >= (64 - i_current) )
{
memcpy( ((uint8_t *)p_md5->p_data) + i_current, p_src,
(64 - i_current) );
Digest( p_md5, p_md5->p_data );
i_offset += (64 - i_current);
i_len -= (64 - i_current);
i_current = 0;
}
/* Add as many entire 64 bytes blocks as we can to the MD5 message */
while( i_len >= 64 )
{
uint32_t p_tmp[ 16 ];
memcpy( p_tmp, p_src + i_offset, 64 );
Digest( p_md5, p_tmp );
i_offset += 64;
i_len -= 64;
}
/* Copy our remaining data to the message's spare buffer */
memcpy( ((uint8_t *)p_md5->p_data) + i_current, p_src + i_offset, i_len );
}
/*****************************************************************************
* EndMD5: finish an MD5 message
*****************************************************************************
* This function adds adequate padding to the end of the message, and appends
* the bit count so that we end at a block boundary.
*****************************************************************************/
static void EndMD5( struct md5_s *p_md5 )
{
unsigned int i_current;
i_current = (p_md5->i_bits / 8) & 63;
/* Append 0x80 to our buffer. No boundary check because the temporary
* buffer cannot be full, otherwise AddMD5 would have emptied it. */
((uint8_t *)p_md5->p_data)[ i_current++ ] = 0x80;
/* If less than 8 bytes are available at the end of the block, complete
* this 64 bytes block with zeros and add it to the message. We'll add
* our length at the end of the next block. */
if( i_current > 56 )
{
memset( ((uint8_t *)p_md5->p_data) + i_current, 0, (64 - i_current) );
Digest( p_md5, p_md5->p_data );
i_current = 0;
}
/* Fill the unused space in our last block with zeroes and put the
* message length at the end. */
memset( ((uint8_t *)p_md5->p_data) + i_current, 0, (56 - i_current) );
p_md5->p_data[ 14 ] = p_md5->i_bits & 0xffffffff;
p_md5->p_data[ 15 ] = (p_md5->i_bits >> 32);
REVERSE( &p_md5->p_data[ 14 ], 2 );
Digest( p_md5, p_md5->p_data );
}
#define F1( x, y, z ) ((z) ^ ((x) & ((y) ^ (z))))
#define F2( x, y, z ) F1((z), (x), (y))
#define F3( x, y, z ) ((x) ^ (y) ^ (z))
#define F4( x, y, z ) ((y) ^ ((x) | ~(z)))
#define MD5_DO( f, w, x, y, z, data, s ) \
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
/*****************************************************************************
* Digest: update the MD5 digest with 64 bytes of data
*****************************************************************************/
static void Digest( struct md5_s *p_md5, uint32_t *p_input )
{
uint32_t a, b, c, d;
REVERSE( p_input, 16 );
a = p_md5->p_digest[ 0 ];
b = p_md5->p_digest[ 1 ];
c = p_md5->p_digest[ 2 ];
d = p_md5->p_digest[ 3 ];
MD5_DO( F1, a, b, c, d, p_input[ 0 ] + 0xd76aa478, 7 );
MD5_DO( F1, d, a, b, c, p_input[ 1 ] + 0xe8c7b756, 12 );
MD5_DO( F1, c, d, a, b, p_input[ 2 ] + 0x242070db, 17 );
MD5_DO( F1, b, c, d, a, p_input[ 3 ] + 0xc1bdceee, 22 );
MD5_DO( F1, a, b, c, d, p_input[ 4 ] + 0xf57c0faf, 7 );
MD5_DO( F1, d, a, b, c, p_input[ 5 ] + 0x4787c62a, 12 );
MD5_DO( F1, c, d, a, b, p_input[ 6 ] + 0xa8304613, 17 );
MD5_DO( F1, b, c, d, a, p_input[ 7 ] + 0xfd469501, 22 );
MD5_DO( F1, a, b, c, d, p_input[ 8 ] + 0x698098d8, 7 );
MD5_DO( F1, d, a, b, c, p_input[ 9 ] + 0x8b44f7af, 12 );
MD5_DO( F1, c, d, a, b, p_input[ 10 ] + 0xffff5bb1, 17 );
MD5_DO( F1, b, c, d, a, p_input[ 11 ] + 0x895cd7be, 22 );
MD5_DO( F1, a, b, c, d, p_input[ 12 ] + 0x6b901122, 7 );
MD5_DO( F1, d, a, b, c, p_input[ 13 ] + 0xfd987193, 12 );
MD5_DO( F1, c, d, a, b, p_input[ 14 ] + 0xa679438e, 17 );
MD5_DO( F1, b, c, d, a, p_input[ 15 ] + 0x49b40821, 22 );
MD5_DO( F2, a, b, c, d, p_input[ 1 ] + 0xf61e2562, 5 );
MD5_DO( F2, d, a, b, c, p_input[ 6 ] + 0xc040b340, 9 );
MD5_DO( F2, c, d, a, b, p_input[ 11 ] + 0x265e5a51, 14 );
MD5_DO( F2, b, c, d, a, p_input[ 0 ] + 0xe9b6c7aa, 20 );
MD5_DO( F2, a, b, c, d, p_input[ 5 ] + 0xd62f105d, 5 );
MD5_DO( F2, d, a, b, c, p_input[ 10 ] + 0x02441453, 9 );
MD5_DO( F2, c, d, a, b, p_input[ 15 ] + 0xd8a1e681, 14 );
MD5_DO( F2, b, c, d, a, p_input[ 4 ] + 0xe7d3fbc8, 20 );
MD5_DO( F2, a, b, c, d, p_input[ 9 ] + 0x21e1cde6, 5 );
MD5_DO( F2, d, a, b, c, p_input[ 14 ] + 0xc33707d6, 9 );
MD5_DO( F2, c, d, a, b, p_input[ 3 ] + 0xf4d50d87, 14 );
MD5_DO( F2, b, c, d, a, p_input[ 8 ] + 0x455a14ed, 20 );
MD5_DO( F2, a, b, c, d, p_input[ 13 ] + 0xa9e3e905, 5 );
MD5_DO( F2, d, a, b, c, p_input[ 2 ] + 0xfcefa3f8, 9 );
MD5_DO( F2, c, d, a, b, p_input[ 7 ] + 0x676f02d9, 14 );
MD5_DO( F2, b, c, d, a, p_input[ 12 ] + 0x8d2a4c8a, 20 );
MD5_DO( F3, a, b, c, d, p_input[ 5 ] + 0xfffa3942, 4 );
MD5_DO( F3, d, a, b, c, p_input[ 8 ] + 0x8771f681, 11 );
MD5_DO( F3, c, d, a, b, p_input[ 11 ] + 0x6d9d6122, 16 );
MD5_DO( F3, b, c, d, a, p_input[ 14 ] + 0xfde5380c, 23 );
MD5_DO( F3, a, b, c, d, p_input[ 1 ] + 0xa4beea44, 4 );
MD5_DO( F3, d, a, b, c, p_input[ 4 ] + 0x4bdecfa9, 11 );
MD5_DO( F3, c, d, a, b, p_input[ 7 ] + 0xf6bb4b60, 16 );
MD5_DO( F3, b, c, d, a, p_input[ 10 ] + 0xbebfbc70, 23 );
MD5_DO( F3, a, b, c, d, p_input[ 13 ] + 0x289b7ec6, 4 );
MD5_DO( F3, d, a, b, c, p_input[ 0 ] + 0xeaa127fa, 11 );
MD5_DO( F3, c, d, a, b, p_input[ 3 ] + 0xd4ef3085, 16 );
MD5_DO( F3, b, c, d, a, p_input[ 6 ] + 0x04881d05, 23 );
MD5_DO( F3, a, b, c, d, p_input[ 9 ] + 0xd9d4d039, 4 );
MD5_DO( F3, d, a, b, c, p_input[ 12 ] + 0xe6db99e5, 11 );
MD5_DO( F3, c, d, a, b, p_input[ 15 ] + 0x1fa27cf8, 16 );
MD5_DO( F3, b, c, d, a, p_input[ 2 ] + 0xc4ac5665, 23 );
MD5_DO( F4, a, b, c, d, p_input[ 0 ] + 0xf4292244, 6 );
MD5_DO( F4, d, a, b, c, p_input[ 7 ] + 0x432aff97, 10 );
MD5_DO( F4, c, d, a, b, p_input[ 14 ] + 0xab9423a7, 15 );
MD5_DO( F4, b, c, d, a, p_input[ 5 ] + 0xfc93a039, 21 );
MD5_DO( F4, a, b, c, d, p_input[ 12 ] + 0x655b59c3, 6 );
MD5_DO( F4, d, a, b, c, p_input[ 3 ] + 0x8f0ccc92, 10 );
MD5_DO( F4, c, d, a, b, p_input[ 10 ] + 0xffeff47d, 15 );
MD5_DO( F4, b, c, d, a, p_input[ 1 ] + 0x85845dd1, 21 );
MD5_DO( F4, a, b, c, d, p_input[ 8 ] + 0x6fa87e4f, 6 );
MD5_DO( F4, d, a, b, c, p_input[ 15 ] + 0xfe2ce6e0, 10 );
MD5_DO( F4, c, d, a, b, p_input[ 6 ] + 0xa3014314, 15 );
MD5_DO( F4, b, c, d, a, p_input[ 13 ] + 0x4e0811a1, 21 );
MD5_DO( F4, a, b, c, d, p_input[ 4 ] + 0xf7537e82, 6 );
MD5_DO( F4, d, a, b, c, p_input[ 11 ] + 0xbd3af235, 10 );
MD5_DO( F4, c, d, a, b, p_input[ 2 ] + 0x2ad7d2bb, 15 );
MD5_DO( F4, b, c, d, a, p_input[ 9 ] + 0xeb86d391, 21 );
p_md5->p_digest[ 0 ] += a;
p_md5->p_digest[ 1 ] += b;
p_md5->p_digest[ 2 ] += c;
p_md5->p_digest[ 3 ] += d;
}
/*****************************************************************************
* InitShuffle: initialise a shuffle structure
*****************************************************************************
* This function initialises tables in the p_shuffle structure that will be
* used later by DoShuffle. The only external parameter is p_sys_key.
*****************************************************************************/
static void InitShuffle( struct shuffle_s *p_shuffle, uint32_t *p_sys_key )
{
char p_secret1[] = "Tv!*";
static char const p_secret2[] = "v8rhvsaAvOKMFfUH%798=[;."
"f8677680a634ba87fnOIf)(*";
unsigned int i;
/* Fill p_commands using the key and a secret seed */
for( i = 0; i < 20; i++ )
{
struct md5_s md5;
int32_t i_hash;
InitMD5( &md5 );
AddMD5( &md5, (uint8_t *)p_sys_key, 16 );
AddMD5( &md5, (uint8_t *)p_secret1, 4 );
EndMD5( &md5 );
p_secret1[ 3 ]++;
REVERSE( md5.p_digest, 1 );
i_hash = ((int32_t)U32_AT(md5.p_digest)) % 1024;
p_shuffle->p_commands[ i ] = i_hash < 0 ? i_hash * -1 : i_hash;
}
/* Fill p_bordel with completely meaningless initial values. */
for( i = 0; i < 4; i++ )
{
p_shuffle->p_bordel[ 4 * i ] = U32_AT(p_sys_key + i);
memcpy( p_shuffle->p_bordel + 4 * i + 1, p_secret2 + 12 * i, 12 );
REVERSE( p_shuffle->p_bordel + 4 * i + 1, 3 );
}
}
/*****************************************************************************
* DoShuffle: shuffle buffer
*****************************************************************************
* This is so ugly and uses so many MD5 checksums that it is most certainly
* one-way, though why it needs to be so complicated is beyond me.
*****************************************************************************/
static void DoShuffle( struct shuffle_s *p_shuffle,
uint32_t *p_buffer, uint32_t i_size )
{
struct md5_s md5;
uint32_t p_big_bordel[ 16 ];
uint32_t *p_bordel = p_shuffle->p_bordel;
unsigned int i;
/* Using the MD5 hash of a memory block is probably not one-way enough
* for the iTunes people. This function randomises p_bordel depending on
* the values in p_commands to make things even more messy in p_bordel. */
for( i = 0; i < 20; i++ )
{
uint8_t i_command, i_index;
if( !p_shuffle->p_commands[ i ] )
{
continue;
}
i_command = (p_shuffle->p_commands[ i ] & 0x300) >> 8;
i_index = p_shuffle->p_commands[ i ] & 0xff;
switch( i_command )
{
case 0x3:
p_bordel[ i_index & 0xf ] = p_bordel[ i_index >> 4 ]
+ p_bordel[ ((i_index + 0x10) >> 4) & 0xf ];
break;
case 0x2:
p_bordel[ i_index >> 4 ] ^= p_shuffle_xor[ 0xff - i_index ];
break;
case 0x1:
p_bordel[ i_index >> 4 ] -= p_shuffle_sub[ 0xff - i_index ];
break;
default:
p_bordel[ i_index >> 4 ] += p_shuffle_add[ 0xff - i_index ];
break;
}
}
/* Convert our newly randomised p_bordel to big endianness and take
* its MD5 hash. */
InitMD5( &md5 );
for( i = 0; i < 16; i++ )
{
p_big_bordel[ i ] = U32_AT(p_bordel + i);
}
AddMD5( &md5, (uint8_t *)p_big_bordel, 64 );
EndMD5( &md5 );
/* XOR our buffer with the computed checksum */
for( i = 0; i < i_size; i++ )
{
p_buffer[ i ] ^= md5.p_digest[ i ];
}
}
/*****************************************************************************
* GetSystemKey: get the system key
*****************************************************************************
* Compute the system key from various system information, see HashSystemInfo.
*****************************************************************************/
static int GetSystemKey( uint32_t *p_sys_key, uint32_t b_ipod )
{
static char const p_secret1[ 8 ] = "YuaFlafu";
static char const p_secret2[ 8 ] = "zPif98ga";
struct md5_s md5;
int64_t i_ipod_id;
uint32_t p_system_hash[ 4 ];
/* Compute the MD5 hash of our system info */
if( ( !b_ipod && HashSystemInfo( p_system_hash ) ) ||
( b_ipod && GetiPodID( &i_ipod_id ) ) )
{
return -1;
}
/* Combine our system info hash with additional secret data. The resulting
* MD5 hash will be our system key. */
InitMD5( &md5 );
AddMD5( &md5, p_secret1, 8 );
if( !b_ipod )
{
AddMD5( &md5, (uint8_t *)p_system_hash, 6 );
AddMD5( &md5, (uint8_t *)p_system_hash, 6 );
AddMD5( &md5, (uint8_t *)p_system_hash, 6 );
AddMD5( &md5, p_secret2, 8 );
}
else
{
i_ipod_id = U64_AT(&i_ipod_id);
AddMD5( &md5, (uint8_t *)&i_ipod_id, sizeof(i_ipod_id) );
AddMD5( &md5, (uint8_t *)&i_ipod_id, sizeof(i_ipod_id) );
AddMD5( &md5, (uint8_t *)&i_ipod_id, sizeof(i_ipod_id) );
}
EndMD5( &md5 );
memcpy( p_sys_key, md5.p_digest, 16 );
return 0;
}
#ifdef _WIN32
# define DRMS_DIRNAME "drms"
#else
# define DRMS_DIRNAME ".drms"
#endif
/*****************************************************************************
* WriteUserKey: write the user key to hard disk
*****************************************************************************
* Write the user key to the hard disk so that it can be reused later or used
* on operating systems other than Win32.
*****************************************************************************/
static int WriteUserKey( void *_p_drms, uint32_t *p_user_key )
{
struct drms_s *p_drms = (struct drms_s *)_p_drms;
FILE *file;
int i_ret = -1;
char psz_path[ PATH_MAX ];
sprintf( psz_path, /* PATH_MAX - 1, */
"%s/" DRMS_DIRNAME, p_drms->psz_homedir );
#if defined( HAVE_ERRNO_H )
# if defined( _WIN32 )
if( !mkdir( psz_path ) || errno == EEXIST )
# else
if( !mkdir( psz_path, 0755 ) || errno == EEXIST )
# endif
#else
if( !mkdir( psz_path ) )
#endif
{
sprintf( psz_path, /*PATH_MAX - 1,*/ "%s/" DRMS_DIRNAME "/%08X.%03d",
p_drms->psz_homedir, p_drms->i_user, p_drms->i_key );
file = fopen( psz_path, "w" );
if( file != NULL )
{
i_ret = fwrite( p_user_key, sizeof(uint32_t),
4, file ) == 4 ? 0 : -1;
fclose( file );
}
}
return i_ret;
}
/*****************************************************************************
* ReadUserKey: read the user key from hard disk
*****************************************************************************
* Retrieve the user key from the hard disk if available.
*****************************************************************************/
static int ReadUserKey( void *_p_drms, uint32_t *p_user_key )
{
struct drms_s *p_drms = (struct drms_s *)_p_drms;
FILE *file;
int i_ret = -1;
char psz_path[ PATH_MAX ];
sprintf( psz_path, /*PATH_MAX - 1,*/
"%s/" DRMS_DIRNAME "/%08X.%03d", p_drms->psz_homedir,
p_drms->i_user, p_drms->i_key );
file = fopen( psz_path, "r" );
if( file != NULL )
{
i_ret = fread( p_user_key, sizeof(uint32_t),
4, file ) == 4 ? 0 : -1;
fclose( file );
}
return i_ret;
}
/*****************************************************************************
* GetUserKey: get the user key
*****************************************************************************
* Retrieve the user key from the hard disk if available, otherwise generate
* it from the system key. If the key could be successfully generated, write
* it to the hard disk for future use.
*****************************************************************************/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -