📄 calendar.java
字号:
millisInDay += dstOffset; // If DST has pushed us into the next day, we must call timeToFields() again. // This happens in DST between 12:00 am and 1:00 am every day. The call to // timeToFields() will give the wrong day, since the Standard time is in the // previous day. if (millisInDay >= ONE_DAY) { long dstMillis = localMillis + dstOffset; millisInDay -= ONE_DAY; // As above, check for and pin extreme values if (localMillis > 0 && dstMillis < 0 && dstOffset > 0) { dstMillis = Long.MAX_VALUE; } else if (localMillis < 0 && dstMillis > 0 && dstOffset < 0) { dstMillis = Long.MIN_VALUE; } timeToFields(dstMillis); } // Fill in all time-related fields based on millisInDay. // so as not to perturb flags. packed_time = (packed_time & (~1023)) | (millisInDay % 1000); millisInDay /= 1000; packed_time = (packed_time & (~(63<<10))) | ((millisInDay % 60) << 10); millisInDay /= 60; packed_time = (packed_time & (~(63<<16))) | ((millisInDay % 60) << 16); millisInDay /= 60; packed_time = (packed_time & (~(31<<22))) | ((millisInDay & 31) << 22); } /** * Convert the time as milliseconds to the date fields. Millis must be * given as local wall millis to get the correct local day. For example, * if it is 11:30 pm Standard, and DST is in effect, the correct DST millis * must be passed in to get the right date. * <p> * Fields that are completed by this method: YEAR, MONTH, DATE, DAY_OF_WEEK. * @param theTime the time in wall millis (either Standard or DST), * whichever is in effect * @param quick if true, only compute the YEAR, MONTH, DATE, and DAY_OF_WEEK. */ private final void timeToFields(long theTime) { int dayOfYear, weekCount, year_field; boolean isLeap; // Compute the year, month, and day of month from the given millis if (theTime >= gregorianCutover) { // The Gregorian epoch day is zero for Monday January 1, year 1. long gregorianEpochDay = millisToJulianDay(theTime) - JAN_1_1_JULIAN_DAY; // Here we convert from the day number to the multiple radix // representation. We use 400-year, 100-year, and 4-year cycles. // For example, the 4-year cycle has 4 years + 1 leap day; giving // 1461 == 365*4 + 1 days. int[] rem = new int[1]; int n400 = floorDivide(gregorianEpochDay, 146097, rem); // 400-year cycle length int n100 = floorDivide(rem[0], 36524, rem); // 100-year cycle length int n4 = floorDivide(rem[0], 1461, rem); // 4-year cycle length int n1 = floorDivide(rem[0], 365, rem); year_field = 400*n400 + 100*n100 + 4*n4 + n1; dayOfYear = rem[0]; // zero-based day of year if (n100 == 4 || n1 == 4) dayOfYear = 365; // Dec 31 at end of 4- or 400-yr cycle else ++year_field; isLeap = ((year_field&0x3) == 0) && // equiv. to (year_field%4 == 0) (year_field%100 != 0 || year_field%400 == 0); // Gregorian day zero is a Monday day_field = (int)((gregorianEpochDay+1) % 7); } else { // The Julian epoch day (not the same as Julian Day) // is zero on Saturday December 30, 0 (Gregorian). long julianEpochDay = millisToJulianDay(theTime) - (JAN_1_1_JULIAN_DAY - 2); year_field = (int) floorDivide(4*julianEpochDay + 1464, 1461); // Compute the Julian calendar day number for January 1, year long january1 = 365*(year_field-1) + floorDivide(year_field-1, 4); dayOfYear = (int)(julianEpochDay - january1); // 0-based // Julian leap years occurred historically every 4 years starting // with 8 AD. Before 8 AD the spacing is irregular; every 3 years // from 45 BC to 9 BC, and then none until 8 AD. However, we don't // implement this historical detail; instead, we implement the // computationally cleaner proleptic calendar, which assumes // consistent 4-year cycles throughout time. isLeap = ((year_field&0x3) == 0); // equiv. to (year_field%4 == 0) // Julian calendar day zero is a Saturday day_field = (int)((julianEpochDay-1) % 7); } // Common Julian/Gregorian calculation int correction = 0; int march1 = isLeap ? 60 : 59; // zero-based DOY for March 1 if (dayOfYear >= march1) correction = isLeap ? 1 : 2; int month_field = (12 * (dayOfYear + correction) + 6) / 367; // zero-based month int date_field = dayOfYear - (isLeap ? LEAP_NUM_DAYS[month_field] : NUM_DAYS[month_field]) + 1; // one-based DOM // Normalize day of week day_field += (day_field < 0) ? (SUNDAY+7) : SUNDAY; month_field += JANUARY; // 0-based packed_date = year_field << 9; packed_date |= (month_field & 15) << 5; packed_date |= date_field & 31; } ///////////////////////////// // Fields => Time computation ///////////////////////////// /** * Converts time field values to UTC as milliseconds. * @exception IllegalArgumentException if any fields are invalid. */ private void calculateTime() { // This function takes advantage of the fact that unset fields in // the time field list have a value of zero. // First, use the year to determine whether to use the Gregorian or the // Julian calendar. If the year is not the year of the cutover, this // computation will be correct. But if the year is the cutover year, // this may be incorrect. In that case, assume the Gregorian calendar, // make the computation, and then recompute if the resultant millis // indicate the wrong calendar has been assumed. // A date such as Oct. 10, 1582 does not exist in a Gregorian calendar // with the default changeover of Oct. 15, 1582, since in such a // calendar Oct. 4 (Julian) is followed by Oct. 15 (Gregorian). This // algorithm will interpret such a date using the Julian calendar, // yielding Oct. 20, 1582 (Gregorian). int year_field = packed_date >> 9; boolean isGregorian = year_field >= gregorianCutoverYear; long julianDay = calculateJulianDay(isGregorian, year_field); long millis = julianDayToMillis(julianDay); // The following check handles portions of the cutover year BEFORE the // cutover itself happens. The check for the julianDate number is for a // rare case; it's a hardcoded number, but it's efficient. The given // Julian day number corresponds to Dec 3, 292269055 BC, which // corresponds to millis near Long.MIN_VALUE. The need for the check // arises because for extremely negative Julian day numbers, the millis // actually overflow to be positive values. Without the check, the // initial date is interpreted with the Gregorian calendar, even when // the cutover doesn't warrant it. if (isGregorian != (millis >= gregorianCutover) && julianDay != -106749550580L) { // See above julianDay = calculateJulianDay(!isGregorian, year_field); millis = julianDayToMillis(julianDay); } // Do the time portion of the conversion. int millisInDay = 0; // Hours // Don't normalize here; let overflow bump into the next period. // This is consistent with how we handle other fields. millisInDay += (packed_time >> 22) & 31; millisInDay *= 60; millisInDay += (packed_time >> 16) & 63; // now have minutes millisInDay *= 60; millisInDay += (packed_time >> 10) & 63; // now have seconds millisInDay *= 1000; millisInDay += packed_time & 1023; // now have millis // Compute the time zone offset and DST offset. There are two potential // ambiguities here. We'll assume a 2:00 am (wall time) switchover time // for discussion purposes here. // 1. The transition into DST. Here, a designated time of 2:00 am - 2:59 am // can be in standard or in DST depending. However, 2:00 am is an invalid // representation (the representation jumps from 1:59:59 am Std to 3:00:00 am DST). // We assume standard time. // 2. The transition out of DST. Here, a designated time of 1:00 am - 1:59 am // can be in standard or DST. Both are valid representations (the rep // jumps from 1:59:59 DST to 1:00:00 Std). // Again, we assume standard time. // We use the TimeZone object to get the zone offset int zoneOffset = zone.getRawOffset(); // Now add date and millisInDay together, to make millis contain local wall // millis, with no zone or DST adjustments millis += millisInDay; dstOffset = 0; /* Normalize the millisInDay to 0..ONE_DAY-1. If the millis is out * of range, then we must call timeToFields() to recompute our * fields. */ int[] normalizedMillisInDay = new int[1]; floorDivide(millis, (int)ONE_DAY, normalizedMillisInDay); // We need to have the month, the day, and the day of the week. // Calling timeToFields will compute the MONTH and DATE fields. // // It's tempting to try to use DAY_OF_WEEK here, if it // is set, but we CAN'T. Even if it's set, it might have // been set wrong by the user. We should rely only on // the Julian day number, which has been computed correctly // using the disambiguation algorithm above. [LIU] int dow = julianDayToDayOfWeek(julianDay); // It's tempting to try to use DAY_OF_WEEK here, if it // is set, but we CAN'T. Even if it's set, it might have // been set wrong by the user. We should rely only on // the Julian day number, which has been computed correctly // using the disambiguation algorithm above. [LIU] dstOffset = zone.getOffset(1, packed_date >> 9, (packed_date >> 5) & 15, packed_date & 31, dow, normalizedMillisInDay[0]) - zoneOffset; dstSet = true; // Note: Because we pass in wall millisInDay, rather than // standard millisInDay, we interpret "1:00 am" on the day // of cessation of DST as "1:00 am Std" (assuming the time // of cessation is 2:00 am). // Store our final computed GMT time, with timezone adjustments. time = millis - zoneOffset - dstOffset; } /** * Compute the Julian day number under either the Gregorian or the * Julian calendar, using the given year and the remaining fields. * @param isGregorian if true, use the Gregorian calendar * @param year the adjusted year number, with 0 indicating the * year 1 BC, -1 indicating 2 BC, etc. * @return the Julian day number */ private final long calculateJulianDay(boolean isGregorian, int year) { int month = 0, y; long millis = 0; month = (packed_date >> 5) & 15 - JANUARY; // If the month is out of range, adjust it into range if (month < 0 || month > 11) { int[] rem = new int[1]; year += floorDivide(month, 12, rem); month = rem[0]; } boolean isLeap = year%4 == 0; y = year - 1; long julianDay = 365L*y + floorDivide(y, 4) + (JAN_1_1_JULIAN_DAY - 3); if (isGregorian) { isLeap = isLeap && ((year%100 != 0) || (year%400 == 0)); // Add 2 because Gregorian calendar starts 2 days after Julian calendar julianDay += floorDivide(y, 400) - floorDivide(y, 100) + 2; } // At this point julianDay is the 0-based day BEFORE the first day of // January 1, year 1 of the given calendar. If julianDay == 0, it // specifies (Jan. 1, 1) - 1, in whatever calendar we are using (Julian // or Gregorian). julianDay += isLeap ? LEAP_NUM_DAYS[month] : NUM_DAYS[month]; julianDay += packed_date & 31; return julianDay; } ///////////////// // Implementation ///////////////// /** * Converts time as milliseconds to Julian day. * @param millis the given milliseconds. * @return the Julian day number. */ private static final long millisToJulianDay(long millis) { return EPOCH_JULIAN_DAY + floorDivide(millis, ONE_DAY); } /** * Converts Julian day to time as milliseconds. * @param julian the given Julian day number. * @return time as milliseconds. */ private static final long julianDayToMillis(long julian) { return (julian - EPOCH_JULIAN_DAY) * ONE_DAY; } private static final int julianDayToDayOfWeek(long julian) { // If julian is negative, then julian%7 will be negative, so we adjust // accordingly. We add 1 because Julian day 0 is Monday. int dayOfWeek = (int)((julian + 1) % 7); return dayOfWeek + ((dayOfWeek < 0) ? (7 + SUNDAY) : SUNDAY); } /** * Divide two long integers, returning the floor of the quotient. * <p> * Unlike the built-in division, this is mathematically well-behaved. * E.g., <code>-1/4</code> => 0 * but <code>floorDivide(-1,4)</code> => -1. * @param numerator the numerator * @param denominator a divisor which must be > 0 * @return the floor of the quotient. */ private static final long floorDivide(long numerator, long denominator) { // We do this computation in order to handle // a numerator of Long.MIN_VALUE correctly return (numerator >= 0) ? numerator / denominator : ((numerator + 1) / denominator) - 1; } /** * Divide two integers, returning the floor of the quotient. * <p> * Unlike the built-in division, this is mathematically well-behaved. * E.g., <code>-1/4</code> => 0 * but <code>floorDivide(-1,4)</code> => -1. * @param numerator the numerator * @param denominator a divisor which must be > 0 * @return the floor of the quotient. */ private static final int floorDivide(int numerator, int denominator) { // We do this computation in order to handle // a numerator of Integer.MIN_VALUE correctly return (numerator >= 0) ? numerator / denominator : ((numerator + 1) / denominator) - 1; } /** * Divide two integers, returning the floor of the quotient, and * the modulus remainder. * <p> * Unlike the built-in division, this is mathematically well-behaved. * E.g., <code>-1/4</code> => 0 and <code>-1%4</code> => -1, * but <code>floorDivide(-1,4)</code> => -1 with <code>remainder[0]</code> => 3. * @param numerator the numerator * @param denominator a divisor which must be > 0 * @param remainder an array of at least one element in which the value * <code>numerator mod denominator</code> is returned. Unlike <code>numerator * % denominator</code>, this will always be non-negative. * @return the floor of the quotient. */ private static final int floorDivide(int numerator, int denominator, int[] remainder) { if (numerator >= 0) { remainder[0] = numerator % denominator; return numerator / denominator; } int quotient = ((numerator + 1) / denominator) - 1; remainder[0] = numerator - (quotient * denominator); return quotient; } /** * Divide two integers, returning the floor of the quotient, and * the modulus remainder. * <p> * Unlike the built-in division, this is mathematically well-behaved. * E.g., <code>-1/4</code> => 0 and <code>-1%4</code> => -1, * but <code>floorDivide(-1,4)</code> => -1 with <code>remainder[0]</code> => 3. * @param numerator the numerator * @param denominator a divisor which must be > 0 * @param remainder an array of at least one element in which the value * <code>numerator mod denominator</code> is returned. Unlike <code>numerator * % denominator</code>, this will always be non-negative. * @return the floor of the quotient. */ private static final int floorDivide(long numerator, int denominator, int[] remainder) { if (numerator >= 0) { remainder[0] = (int)(numerator % denominator); return (int)(numerator / denominator); } int quotient = (int)(((numerator + 1) / denominator) - 1); remainder[0] = (int)(numerator - (quotient * denominator)); return quotient; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -