📄 svm.cpp
字号:
++k; // look at the newcomer }}double Solver_NU::calculate_rho(){ int nr_free1 = 0,nr_free2 = 0; double ub1 = INF, ub2 = INF; double lb1 = -INF, lb2 = -INF; double sum_free1 = 0, sum_free2 = 0; for(int i=0;i<active_size;i++) { if(y[i]==+1) { if(is_lower_bound(i)) ub1 = min(ub1,G[i]); else if(is_upper_bound(i)) lb1 = max(lb1,G[i]); else { ++nr_free1; sum_free1 += G[i]; } } else { if(is_lower_bound(i)) ub2 = min(ub2,G[i]); else if(is_upper_bound(i)) lb2 = max(lb2,G[i]); else { ++nr_free2; sum_free2 += G[i]; } } } double r1,r2; if(nr_free1 > 0) r1 = sum_free1/nr_free1; else r1 = (ub1+lb1)/2; if(nr_free2 > 0) r2 = sum_free2/nr_free2; else r2 = (ub2+lb2)/2; si->r = (r1+r2)/2; return (r1-r2)/2;}//// Q matrices for various formulations//class SVC_Q: public Kernel{ public: SVC_Q(const svm_problem& prob, const svm_parameter& param, const schar *y_) :Kernel(prob.l, prob.x, param) { clone(y,y_,prob.l); cache = new Cache(prob.l,(int)(param.cache_size*(1<<20))); QD = new Qfloat[prob.l]; for(int i=0;i<prob.l;i++) QD[i]= (Qfloat)(this->*kernel_function)(i,i); } Qfloat *get_Q(int i, int len) const { Qfloat *data; int start; if((start = cache->get_data(i,&data,len)) < len) { for(int j=start;j<len;j++) data[j] = (Qfloat)(y[i]*y[j]*(this->*kernel_function)(i,j)); } return data; } Qfloat *get_QD() const { return QD; } void swap_index(int i, int j) const { cache->swap_index(i,j); Kernel::swap_index(i,j); swap(y[i],y[j]); swap(QD[i],QD[j]); } ~SVC_Q() { delete[] y; delete cache; delete[] QD; }private: schar *y; Cache *cache; Qfloat *QD;};class ONE_CLASS_Q: public Kernel{public: ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param) :Kernel(prob.l, prob.x, param) { cache = new Cache(prob.l,(int)(param.cache_size*(1<<20))); QD = new Qfloat[prob.l]; for(int i=0;i<prob.l;i++) QD[i]= (Qfloat)(this->*kernel_function)(i,i); } Qfloat *get_Q(int i, int len) const { Qfloat *data; int start; if((start = cache->get_data(i,&data,len)) < len) { for(int j=start;j<len;j++) data[j] = (Qfloat)(this->*kernel_function)(i,j); } return data; } Qfloat *get_QD() const { return QD; } void swap_index(int i, int j) const { cache->swap_index(i,j); Kernel::swap_index(i,j); swap(QD[i],QD[j]); } ~ONE_CLASS_Q() { delete cache; delete[] QD; }private: Cache *cache; Qfloat *QD;};class SVR_Q: public Kernel{ public: SVR_Q(const svm_problem& prob, const svm_parameter& param) :Kernel(prob.l, prob.x, param) { l = prob.l; cache = new Cache(l,(int)(param.cache_size*(1<<20))); QD = new Qfloat[2*l]; sign = new schar[2*l]; index = new int[2*l]; for(int k=0;k<l;k++) { sign[k] = 1; sign[k+l] = -1; index[k] = k; index[k+l] = k; QD[k]= (Qfloat)(this->*kernel_function)(k,k); QD[k+l]=QD[k]; } buffer[0] = new Qfloat[2*l]; buffer[1] = new Qfloat[2*l]; next_buffer = 0; } void swap_index(int i, int j) const { swap(sign[i],sign[j]); swap(index[i],index[j]); swap(QD[i],QD[j]); } Qfloat *get_Q(int i, int len) const { Qfloat *data; int real_i = index[i]; if(cache->get_data(real_i,&data,l) < l) { for(int j=0;j<l;j++) data[j] = (Qfloat)(this->*kernel_function)(real_i,j); } // reorder and copy Qfloat *buf = buffer[next_buffer]; next_buffer = 1 - next_buffer; schar si = sign[i]; for(int j=0;j<len;j++) buf[j] = si * sign[j] * data[index[j]]; return buf; } Qfloat *get_QD() const { return QD; } ~SVR_Q() { delete cache; delete[] sign; delete[] index; delete[] buffer[0]; delete[] buffer[1]; delete[] QD; }private: int l; Cache *cache; schar *sign; int *index; mutable int next_buffer; Qfloat *buffer[2]; Qfloat *QD;};//// construct and solve various formulations//static void solve_c_svc( const svm_problem *prob, const svm_parameter* param, double *alpha, Solver::SolutionInfo* si, double Cp, double Cn){ int l = prob->l; double *minus_ones = new double[l]; schar *y = new schar[l]; int i; for(i=0;i<l;i++) { alpha[i] = 0; minus_ones[i] = -1; if(prob->y[i] > 0) y[i] = +1; else y[i]=-1; } Solver s; s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y, alpha, Cp, Cn, param->eps, si, param->shrinking); double sum_alpha=0; for(i=0;i<l;i++) sum_alpha += alpha[i]; if (Cp==Cn) info("nu = %f\n", sum_alpha/(Cp*prob->l)); for(i=0;i<l;i++) alpha[i] *= y[i]; delete[] minus_ones; delete[] y;}static void solve_nu_svc( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo* si){ int i; int l = prob->l; double nu = param->nu; schar *y = new schar[l]; for(i=0;i<l;i++) if(prob->y[i]>0) y[i] = +1; else y[i] = -1; double sum_pos = nu*l/2; double sum_neg = nu*l/2; for(i=0;i<l;i++) if(y[i] == +1) { alpha[i] = min(1.0,sum_pos); sum_pos -= alpha[i]; } else { alpha[i] = min(1.0,sum_neg); sum_neg -= alpha[i]; } double *zeros = new double[l]; for(i=0;i<l;i++) zeros[i] = 0; Solver_NU s; s.Solve(l, SVC_Q(*prob,*param,y), zeros, y, alpha, 1.0, 1.0, param->eps, si, param->shrinking); double r = si->r; info("C = %f\n",1/r); for(i=0;i<l;i++) alpha[i] *= y[i]/r; si->rho /= r; si->obj /= (r*r); si->upper_bound_p = 1/r; si->upper_bound_n = 1/r; delete[] y; delete[] zeros;}static void solve_one_class( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo* si){ int l = prob->l; double *zeros = new double[l]; schar *ones = new schar[l]; int i; int n = (int)(param->nu*prob->l); // # of alpha's at upper bound for(i=0;i<n;i++) alpha[i] = 1; if(n<prob->l) alpha[n] = param->nu * prob->l - n; for(i=n+1;i<l;i++) alpha[i] = 0; for(i=0;i<l;i++) { zeros[i] = 0; ones[i] = 1; } Solver s; s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones, alpha, 1.0, 1.0, param->eps, si, param->shrinking); delete[] zeros; delete[] ones;}static void solve_epsilon_svr( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo* si){ int l = prob->l; double *alpha2 = new double[2*l]; double *linear_term = new double[2*l]; schar *y = new schar[2*l]; int i; for(i=0;i<l;i++) { alpha2[i] = 0; linear_term[i] = param->p - prob->y[i]; y[i] = 1; alpha2[i+l] = 0; linear_term[i+l] = param->p + prob->y[i]; y[i+l] = -1; } Solver s; s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y, alpha2, param->C, param->C, param->eps, si, param->shrinking); double sum_alpha = 0; for(i=0;i<l;i++) { alpha[i] = alpha2[i] - alpha2[i+l]; sum_alpha += fabs(alpha[i]); } info("nu = %f\n",sum_alpha/(param->C*l)); delete[] alpha2; delete[] linear_term; delete[] y;}static void solve_nu_svr( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo* si){ int l = prob->l; double C = param->C; double *alpha2 = new double[2*l]; double *linear_term = new double[2*l]; schar *y = new schar[2*l]; int i; double sum = C * param->nu * l / 2; for(i=0;i<l;i++) { alpha2[i] = alpha2[i+l] = min(sum,C); sum -= alpha2[i]; linear_term[i] = - prob->y[i]; y[i] = 1; linear_term[i+l] = prob->y[i]; y[i+l] = -1; } Solver_NU s; s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y, alpha2, C, C, param->eps, si, param->shrinking); info("epsilon = %f\n",-si->r); for(i=0;i<l;i++) alpha[i] = alpha2[i] - alpha2[i+l]; delete[] alpha2; delete[] linear_term; delete[] y;}//// decision_function//struct decision_function{ double *alpha; double rho; };decision_function svm_train_one( const svm_problem *prob, const svm_parameter *param, double Cp, double Cn){ double *alpha = Malloc(double,prob->l); Solver::SolutionInfo si; switch(param->svm_type) { case C_SVC: solve_c_svc(prob,param,alpha,&si,Cp,Cn); break; case NU_SVC: solve_nu_svc(prob,param,alpha,&si); break; case ONE_CLASS: solve_one_class(prob,param,alpha,&si); break; case EPSILON_SVR: solve_epsilon_svr(prob,param,alpha,&si); break; case NU_SVR: solve_nu_svr(prob,param,alpha,&si); break; } info("obj = %f, rho = %f\n",si.obj,si.rho); // output SVs int nSV = 0; int nBSV = 0; for(int i=0;i<prob->l;i++) { if(fabs(alpha[i]) > 0) { ++nSV; if(prob->y[i] > 0) { if(fabs(alpha[i]) >= si.upper_bound_p) ++nBSV; } else { if(fabs(alpha[i]) >= si.upper_bound_n) ++nBSV; } } } info("nSV = %d, nBSV = %d\n",nSV,nBSV); decision_function f; f.alpha = alpha; f.rho = si.rho; return f;}//// svm_model//struct svm_model{ svm_parameter param; // parameter int nr_class; // number of classes, = 2 in regression/one class svm int l; // total #SV svm_node **SV; // SVs (SV[l]) double **sv_coef; // coefficients for SVs in decision functions (sv_coef[n-1][l]) double *rho; // constants in decision functions (rho[n*(n-1)/2]) double *probA; // pariwise probability information double *probB; // for classification only int *label; // label of each class (label[n]) int *nSV; // number of SVs for each class (nSV[n]) // nSV[0] + nSV[1] + ... + nSV[n-1] = l // XXX int free_sv; // 1 if svm_model is created by svm_load_model // 0 if svm_model is created by svm_train};// Platt's binary SVM Probablistic Output: an improvement from Lin et al.void sigmoid_train( int l, const double *dec_values, const double *labels, double& A, double& B){ double prior1=0, prior0 = 0; int i; for (i=0;i<l;i++) if (labels[i] > 0) prior1+=1; else prior0+=1; int max_iter=100; // Maximal number of iterations double min_step=1e-10; // Minimal step taken in line search double sigma=1e-3; // For numerically strict PD of Hessian double eps=1e-5; double hiTarget=(prior1+1.0)/(prior1+2.0); double loTarget=1/(prior0+2.0); double *t=Malloc(double,l); double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize; double newA,newB,newf,d1,d2; int iter; // Initial Point and Initial Fun Value A=0.0; B=log((prior0+1.0)/(prior1+1.0)); double fval = 0.0; for (i=0;i<l;i++) { if (labels[i]>0) t[i]=hiTarget; else t[i]=loTarget; fApB = dec_values[i]*A+B; if (fApB>=0) fval += t[i]*fApB + log(1+exp(-fApB)); else fval += (t[i] - 1)*fApB +log(1+exp(fApB)); } for (iter=0;iter<max_iter;iter++) { // Update Gradient and Hessian (use H' = H + sigma I) h11=sigma; // numerically ensures strict PD h22=sigma; h21=0.0;g1=0.0;g2=0.0; for (i=0;i<l;i++) { fApB = dec_values[i]*A+B; if (fApB >= 0) { p=exp(-fApB)/(1.0+exp(-fApB)); q=1.0/(1.0+exp(-fApB)); } else { p=1.0/(1.0+exp(fApB)); q=exp(fApB)/(1.0+exp(fApB)); } d2=p*q; h11+=dec_values[i]*dec_values[i]*d2; h22+=d2; h21+=dec_values[i]*d2; d1=t[i]-p; g1+=dec_values[i]*d1; g2+=d1; } // Stopping Criteria if (fabs(g1)<eps && fabs(g2)<eps) break; // Finding Newton direction: -inv(H') * g det=h11*h22-h21*h21; dA=-(h22*g1 - h21 * g2) / det; dB=-(-h21*g1+ h11 * g2) / det; gd=g1*dA+g2*dB; stepsize = 1; // Line Search while (stepsize >= min_step) { newA = A + stepsize * dA; newB = B + stepsize * dB; // New function value newf = 0.0; for (i=0;i<l;i++) { fApB = dec_values[i]*newA+newB; if (fApB >= 0) newf += t[i]*fApB + log(1+exp(-fApB)); else newf += (t[i] - 1)*fApB +log(1+exp(fApB)); } // Check sufficient decrease if (newf<fval+0.0001*stepsize*gd) { A=newA;B=newB;fval=newf; break;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -