📄 svm.java
字号:
if(G[k] < Gm2) continue; } else if(G[k] < Gm4) continue; } else continue; swap_index(k,active_size); active_size++; ++k; // look at the newcomer } } double calculate_rho() { int nr_free1 = 0,nr_free2 = 0; double ub1 = INF, ub2 = INF; double lb1 = -INF, lb2 = -INF; double sum_free1 = 0, sum_free2 = 0; for(int i=0;i<active_size;i++) { if(y[i]==+1) { if(is_lower_bound(i)) ub1 = Math.min(ub1,G[i]); else if(is_upper_bound(i)) lb1 = Math.max(lb1,G[i]); else { ++nr_free1; sum_free1 += G[i]; } } else { if(is_lower_bound(i)) ub2 = Math.min(ub2,G[i]); else if(is_upper_bound(i)) lb2 = Math.max(lb2,G[i]); else { ++nr_free2; sum_free2 += G[i]; } } } double r1,r2; if(nr_free1 > 0) r1 = sum_free1/nr_free1; else r1 = (ub1+lb1)/2; if(nr_free2 > 0) r2 = sum_free2/nr_free2; else r2 = (ub2+lb2)/2; si.r = (r1+r2)/2; return (r1-r2)/2; }}//// Q matrices for various formulations//class SVC_Q extends Kernel{ private final byte[] y; private final Cache cache; private final float[] QD; SVC_Q(svm_problem prob, svm_parameter param, byte[] y_) { super(prob.l, prob.x, param); y = (byte[])y_.clone(); cache = new Cache(prob.l,(int)(param.cache_size*(1<<20))); QD = new float[prob.l]; for(int i=0;i<prob.l;i++) QD[i]= (float)kernel_function(i,i); } float[] get_Q(int i, int len) { float[][] data = new float[1][]; int start; if((start = cache.get_data(i,data,len)) < len) { for(int j=start;j<len;j++) data[0][j] = (float)(y[i]*y[j]*kernel_function(i,j)); } return data[0]; } float[] get_QD() { return QD; } void swap_index(int i, int j) { cache.swap_index(i,j); super.swap_index(i,j); do {byte _=y[i]; y[i]=y[j]; y[j]=_;} while(false); do {float _=QD[i]; QD[i]=QD[j]; QD[j]=_;} while(false); }}class ONE_CLASS_Q extends Kernel{ private final Cache cache; private final float[] QD; ONE_CLASS_Q(svm_problem prob, svm_parameter param) { super(prob.l, prob.x, param); cache = new Cache(prob.l,(int)(param.cache_size*(1<<20))); QD = new float[prob.l]; for(int i=0;i<prob.l;i++) QD[i]= (float)kernel_function(i,i); } float[] get_Q(int i, int len) { float[][] data = new float[1][]; int start; if((start = cache.get_data(i,data,len)) < len) { for(int j=start;j<len;j++) data[0][j] = (float)kernel_function(i,j); } return data[0]; } float[] get_QD() { return QD; } void swap_index(int i, int j) { cache.swap_index(i,j); super.swap_index(i,j); do {float _=QD[i]; QD[i]=QD[j]; QD[j]=_;} while(false); }}class SVR_Q extends Kernel{ private final int l; private final Cache cache; private final byte[] sign; private final int[] index; private int next_buffer; private float[][] buffer; private final float[] QD; SVR_Q(svm_problem prob, svm_parameter param) { super(prob.l, prob.x, param); l = prob.l; cache = new Cache(l,(int)(param.cache_size*(1<<20))); QD = new float[2*l]; sign = new byte[2*l]; index = new int[2*l]; for(int k=0;k<l;k++) { sign[k] = 1; sign[k+l] = -1; index[k] = k; index[k+l] = k; QD[k] = (float)kernel_function(k,k); QD[k+l] = QD[k]; } buffer = new float[2][2*l]; next_buffer = 0; } void swap_index(int i, int j) { do {byte _=sign[i]; sign[i]=sign[j]; sign[j]=_;} while(false); do {int _=index[i]; index[i]=index[j]; index[j]=_;} while(false); do {float _=QD[i]; QD[i]=QD[j]; QD[j]=_;} while(false); } float[] get_Q(int i, int len) { float[][] data = new float[1][]; int real_i = index[i]; if(cache.get_data(real_i,data,l) < l) { for(int j=0;j<l;j++) data[0][j] = (float)kernel_function(real_i,j); } // reorder and copy float buf[] = buffer[next_buffer]; next_buffer = 1 - next_buffer; byte si = sign[i]; for(int j=0;j<len;j++) buf[j] = si * sign[j] * data[0][index[j]]; return buf; } float[] get_QD() { return QD; }}public class svm { // // construct and solve various formulations // private static void solve_c_svc(svm_problem prob, svm_parameter param, double[] alpha, Solver.SolutionInfo si, double Cp, double Cn) { int l = prob.l; double[] minus_ones = new double[l]; byte[] y = new byte[l]; int i; for(i=0;i<l;i++) { alpha[i] = 0; minus_ones[i] = -1; if(prob.y[i] > 0) y[i] = +1; else y[i]=-1; } Solver s = new Solver(); s.Solve(l, new SVC_Q(prob,param,y), minus_ones, y, alpha, Cp, Cn, param.eps, si, param.shrinking); double sum_alpha=0; for(i=0;i<l;i++) sum_alpha += alpha[i]; if (Cp==Cn) System.out.print("nu = "+sum_alpha/(Cp*prob.l)+"\n"); for(i=0;i<l;i++) alpha[i] *= y[i]; } private static void solve_nu_svc(svm_problem prob, svm_parameter param, double[] alpha, Solver.SolutionInfo si) { int i; int l = prob.l; double nu = param.nu; byte[] y = new byte[l]; for(i=0;i<l;i++) if(prob.y[i]>0) y[i] = +1; else y[i] = -1; double sum_pos = nu*l/2; double sum_neg = nu*l/2; for(i=0;i<l;i++) if(y[i] == +1) { alpha[i] = Math.min(1.0,sum_pos); sum_pos -= alpha[i]; } else { alpha[i] = Math.min(1.0,sum_neg); sum_neg -= alpha[i]; } double[] zeros = new double[l]; for(i=0;i<l;i++) zeros[i] = 0; Solver_NU s = new Solver_NU(); s.Solve(l, new SVC_Q(prob,param,y), zeros, y, alpha, 1.0, 1.0, param.eps, si, param.shrinking); double r = si.r; System.out.print("C = "+1/r+"\n"); for(i=0;i<l;i++) alpha[i] *= y[i]/r; si.rho /= r; si.obj /= (r*r); si.upper_bound_p = 1/r; si.upper_bound_n = 1/r; } private static void solve_one_class(svm_problem prob, svm_parameter param, double[] alpha, Solver.SolutionInfo si) { int l = prob.l; double[] zeros = new double[l]; byte[] ones = new byte[l]; int i; int n = (int)(param.nu*prob.l); // # of alpha's at upper bound for(i=0;i<n;i++) alpha[i] = 1; if(n<prob.l) alpha[n] = param.nu * prob.l - n; for(i=n+1;i<l;i++) alpha[i] = 0; for(i=0;i<l;i++) { zeros[i] = 0; ones[i] = 1; } Solver s = new Solver(); s.Solve(l, new ONE_CLASS_Q(prob,param), zeros, ones, alpha, 1.0, 1.0, param.eps, si, param.shrinking); } private static void solve_epsilon_svr(svm_problem prob, svm_parameter param, double[] alpha, Solver.SolutionInfo si) { int l = prob.l; double[] alpha2 = new double[2*l]; double[] linear_term = new double[2*l]; byte[] y = new byte[2*l]; int i; for(i=0;i<l;i++) { alpha2[i] = 0; linear_term[i] = param.p - prob.y[i]; y[i] = 1; alpha2[i+l] = 0; linear_term[i+l] = param.p + prob.y[i]; y[i+l] = -1; } Solver s = new Solver(); s.Solve(2*l, new SVR_Q(prob,param), linear_term, y, alpha2, param.C, param.C, param.eps, si, param.shrinking); double sum_alpha = 0; for(i=0;i<l;i++) { alpha[i] = alpha2[i] - alpha2[i+l]; sum_alpha += Math.abs(alpha[i]); } System.out.print("nu = "+sum_alpha/(param.C*l)+"\n"); } private static void solve_nu_svr(svm_problem prob, svm_parameter param, double[] alpha, Solver.SolutionInfo si) { int l = prob.l; double C = param.C; double[] alpha2 = new double[2*l]; double[] linear_term = new double[2*l]; byte[] y = new byte[2*l]; int i; double sum = C * param.nu * l / 2; for(i=0;i<l;i++) { alpha2[i] = alpha2[i+l] = Math.min(sum,C); sum -= alpha2[i]; linear_term[i] = - prob.y[i]; y[i] = 1; linear_term[i+l] = prob.y[i]; y[i+l] = -1; } Solver_NU s = new Solver_NU(); s.Solve(2*l, new SVR_Q(prob,param), linear_term, y, alpha2, C, C, param.eps, si, param.shrinking); System.out.print("epsilon = "+(-si.r)+"\n"); for(i=0;i<l;i++) alpha[i] = alpha2[i] - alpha2[i+l]; } // // decision_function // static class decision_function { double[] alpha; double rho; }; static decision_function svm_train_one( svm_problem prob, svm_parameter param, double Cp, double Cn) { double[] alpha = new double[prob.l]; Solver.SolutionInfo si = new Solver.SolutionInfo(); switch(param.svm_type) { case svm_parameter.C_SVC: solve_c_svc(prob,param,alpha,si,Cp,Cn); break; case svm_parameter.NU_SVC: solve_nu_svc(prob,param,alpha,si); break; case svm_parameter.ONE_CLASS: solve_one_class(prob,param,alpha,si); break; case svm_parameter.EPSILON_SVR: solve_epsilon_svr(prob,param,alpha,si); break; case svm_parameter.NU_SVR: solve_nu_svr(prob,param,alpha,si); break; } System.out.print("obj = "+si.obj+", rho = "+si.rho+"\n"); // output SVs int nSV = 0; int nBSV = 0; for(int i=0;i<prob.l;i++) { if(Math.abs(alpha[i]) > 0) { ++nSV; if(prob.y[i] > 0) { if(Math.abs(alpha[i]) >= si.upper_bound_p) ++nBSV; } else { if(Math.abs(alpha[i]) >= si.upper_bound_n) ++nBSV; } } } System.out.print("nSV = "+nSV+", nBSV = "+nBSV+"\n"); decision_function f = new decision_function(); f.alpha = alpha; f.rho = si.rho; return f; } // Platt's binary SVM Probablistic Output: an improvement from Lin et al. private static void sigmoid_train(int l, double[] dec_values, double[] labels, double[] probAB) { double A, B; double prior1=0, prior0 = 0; int i; for (i=0;i<l;i++) if (labels[i] > 0) prior1+=1; else prior0+=1; int max_iter=100; // Maximal number of iterations double min_step=1e-10; // Minimal step taken in line search double sigma=1e-3; // For numerically strict PD of Hessian double eps=1e-5; double hiTarget=(prior1+1.0)/(prior1+2.0); double loTarget=1/(prior0+2.0); double[] t= new double[l]; double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize; double newA,newB,newf,d1,d2; int iter; // Initial Point and Initial Fun Value A=0.0; B=Math.log((prior0+1.0)/(prior1+1.0)); double fval = 0.0; for (i=0;i<l;i++) { if (labels[i]>0) t[i]=hiTarget; else t[i]=loTarget; fApB = dec_values[i]*A+B; if (fApB>=0) fval += t[i]*fApB + Math.log(1+Math.exp(-fApB)); else fval += (t[i] - 1)*fApB +Math.log(1+Math.exp(fApB)); } for (iter=0;iter<max_iter;iter++) { // Update Gradient and Hessian (use H' = H + sigma I) h11=sigma; // numerically ensures strict PD h22=sigma; h21=0.0;g1=0.0;g2=0.0; for (i=0;i<l;i++) { fApB = dec_values[i]*A+B; if (fApB >= 0) { p=Math.exp(-fApB)/(1.0+Math.exp(-fApB)); q=1.0/(1.0+Math.exp(-fApB)); } else { p=1.0/(1.0+Math.exp(fApB)); q=Math.exp(fApB)/(1.0+Math.exp(fApB)); } d2=p*q; h11+=dec_values[i]*dec_values[i]*d2; h22+=d2; h21+=dec_values[i]*d2; d1=t[i]-p; g1+=dec_values[i]*d1; g2+=d1; } // Stopping Criteria if (Math.abs(g1)<eps && Math.abs(g2)<eps) break; // Finding Newton direction: -inv(H') * g det=h11*h22-h21*h21; dA=-(h22*g1 - h21 * g2) / det; dB=-(-h21*g1+ h11 * g2) / det; gd=g1*dA+g2*dB; stepsize = 1; // Line Search while (stepsize >= min_step) { newA = A + stepsize * dA; newB = B + stepsize * dB; // New function value newf = 0.0; for (i=0;i<l;i++) { fApB = dec_values[i]*newA+newB; if (fApB >= 0) newf += t[i]*fApB + Math.log(1+Math.exp(-fApB)); else newf += (t[i] - 1)*fApB +Math.log(1+Math.exp(fApB)); } // Check sufficient decrease if (newf<fval+0.0001*stepsize*gd) { A=newA;B=newB;fval=newf; break; } else stepsize = stepsize / 2.0; } if (stepsize < min_step) { System.err.print("Line search fails in two-class probability estimates\n"); break;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -