⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 svm.java

📁 SVM是一种常用的模式分类机器学习算法
💻 JAVA
📖 第 1 页 / 共 5 页
字号:
					if(G[k] < Gm2) continue;				}				else	if(G[k] < Gm4) continue;			}			else continue;			swap_index(k,active_size);			active_size++;			++k;	// look at the newcomer		}	}		double calculate_rho()	{		int nr_free1 = 0,nr_free2 = 0;		double ub1 = INF, ub2 = INF;		double lb1 = -INF, lb2 = -INF;		double sum_free1 = 0, sum_free2 = 0;		for(int i=0;i<active_size;i++)		{			if(y[i]==+1)			{				if(is_lower_bound(i))					ub1 = Math.min(ub1,G[i]);				else if(is_upper_bound(i))					lb1 = Math.max(lb1,G[i]);				else				{					++nr_free1;					sum_free1 += G[i];				}			}			else			{				if(is_lower_bound(i))					ub2 = Math.min(ub2,G[i]);				else if(is_upper_bound(i))					lb2 = Math.max(lb2,G[i]);				else				{					++nr_free2;					sum_free2 += G[i];				}			}		}		double r1,r2;		if(nr_free1 > 0)			r1 = sum_free1/nr_free1;		else			r1 = (ub1+lb1)/2;		if(nr_free2 > 0)			r2 = sum_free2/nr_free2;		else			r2 = (ub2+lb2)/2;		si.r = (r1+r2)/2;		return (r1-r2)/2;	}}//// Q matrices for various formulations//class SVC_Q extends Kernel{	private final byte[] y;	private final Cache cache;	private final float[] QD;	SVC_Q(svm_problem prob, svm_parameter param, byte[] y_)	{		super(prob.l, prob.x, param);		y = (byte[])y_.clone();		cache = new Cache(prob.l,(int)(param.cache_size*(1<<20)));		QD = new float[prob.l];		for(int i=0;i<prob.l;i++)			QD[i]= (float)kernel_function(i,i);	}	float[] get_Q(int i, int len)	{		float[][] data = new float[1][];		int start;		if((start = cache.get_data(i,data,len)) < len)		{			for(int j=start;j<len;j++)				data[0][j] = (float)(y[i]*y[j]*kernel_function(i,j));		}		return data[0];	}	float[] get_QD()	{		return QD;	}	void swap_index(int i, int j)	{		cache.swap_index(i,j);		super.swap_index(i,j);		do {byte _=y[i]; y[i]=y[j]; y[j]=_;} while(false);		do {float _=QD[i]; QD[i]=QD[j]; QD[j]=_;} while(false);	}}class ONE_CLASS_Q extends Kernel{	private final Cache cache;	private final float[] QD;	ONE_CLASS_Q(svm_problem prob, svm_parameter param)	{		super(prob.l, prob.x, param);		cache = new Cache(prob.l,(int)(param.cache_size*(1<<20)));		QD = new float[prob.l];		for(int i=0;i<prob.l;i++)			QD[i]= (float)kernel_function(i,i);	}	float[] get_Q(int i, int len)	{		float[][] data = new float[1][];		int start;		if((start = cache.get_data(i,data,len)) < len)		{			for(int j=start;j<len;j++)				data[0][j] = (float)kernel_function(i,j);		}		return data[0];	}	float[] get_QD()	{		return QD;	}	void swap_index(int i, int j)	{		cache.swap_index(i,j);		super.swap_index(i,j);		do {float _=QD[i]; QD[i]=QD[j]; QD[j]=_;} while(false);	}}class SVR_Q extends Kernel{	private final int l;	private final Cache cache;	private final byte[] sign;	private final int[] index;	private int next_buffer;	private float[][] buffer;	private final float[] QD;	SVR_Q(svm_problem prob, svm_parameter param)	{		super(prob.l, prob.x, param);		l = prob.l;		cache = new Cache(l,(int)(param.cache_size*(1<<20)));		QD = new float[2*l];		sign = new byte[2*l];		index = new int[2*l];		for(int k=0;k<l;k++)		{			sign[k] = 1;			sign[k+l] = -1;			index[k] = k;			index[k+l] = k;			QD[k] = (float)kernel_function(k,k);			QD[k+l] = QD[k];		}		buffer = new float[2][2*l];		next_buffer = 0;	}	void swap_index(int i, int j)	{		do {byte _=sign[i]; sign[i]=sign[j]; sign[j]=_;} while(false);		do {int _=index[i]; index[i]=index[j]; index[j]=_;} while(false);		do {float _=QD[i]; QD[i]=QD[j]; QD[j]=_;} while(false);	}	float[] get_Q(int i, int len)	{		float[][] data = new float[1][];		int real_i = index[i];		if(cache.get_data(real_i,data,l) < l)		{			for(int j=0;j<l;j++)				data[0][j] = (float)kernel_function(real_i,j);		}		// reorder and copy		float buf[] = buffer[next_buffer];		next_buffer = 1 - next_buffer;		byte si = sign[i];		for(int j=0;j<len;j++)			buf[j] = si * sign[j] * data[0][index[j]];		return buf;	}	float[] get_QD()	{		return QD;	}}public class svm {	//	// construct and solve various formulations	//	private static void solve_c_svc(svm_problem prob, svm_parameter param,					double[] alpha, Solver.SolutionInfo si,					double Cp, double Cn)	{		int l = prob.l;		double[] minus_ones = new double[l];		byte[] y = new byte[l];		int i;		for(i=0;i<l;i++)		{			alpha[i] = 0;			minus_ones[i] = -1;			if(prob.y[i] > 0) y[i] = +1; else y[i]=-1;		}		Solver s = new Solver();		s.Solve(l, new SVC_Q(prob,param,y), minus_ones, y,			alpha, Cp, Cn, param.eps, si, param.shrinking);		double sum_alpha=0;		for(i=0;i<l;i++)			sum_alpha += alpha[i];		if (Cp==Cn)			System.out.print("nu = "+sum_alpha/(Cp*prob.l)+"\n");		for(i=0;i<l;i++)			alpha[i] *= y[i];	}	private static void solve_nu_svc(svm_problem prob, svm_parameter param,				 	double[] alpha, Solver.SolutionInfo si)	{		int i;		int l = prob.l;		double nu = param.nu;		byte[] y = new byte[l];		for(i=0;i<l;i++)			if(prob.y[i]>0)				y[i] = +1;			else				y[i] = -1;		double sum_pos = nu*l/2;		double sum_neg = nu*l/2;		for(i=0;i<l;i++)			if(y[i] == +1)			{				alpha[i] = Math.min(1.0,sum_pos);				sum_pos -= alpha[i];			}			else			{				alpha[i] = Math.min(1.0,sum_neg);				sum_neg -= alpha[i];			}		double[] zeros = new double[l];		for(i=0;i<l;i++)			zeros[i] = 0;		Solver_NU s = new Solver_NU();		s.Solve(l, new SVC_Q(prob,param,y), zeros, y,			alpha, 1.0, 1.0, param.eps, si, param.shrinking);		double r = si.r;		System.out.print("C = "+1/r+"\n");		for(i=0;i<l;i++)			alpha[i] *= y[i]/r;		si.rho /= r;		si.obj /= (r*r);		si.upper_bound_p = 1/r;		si.upper_bound_n = 1/r;	}	private static void solve_one_class(svm_problem prob, svm_parameter param,				    	double[] alpha, Solver.SolutionInfo si)	{		int l = prob.l;		double[] zeros = new double[l];		byte[] ones = new byte[l];		int i;		int n = (int)(param.nu*prob.l);	// # of alpha's at upper bound		for(i=0;i<n;i++)			alpha[i] = 1;		if(n<prob.l)			alpha[n] = param.nu * prob.l - n;		for(i=n+1;i<l;i++)			alpha[i] = 0;		for(i=0;i<l;i++)		{			zeros[i] = 0;			ones[i] = 1;		}		Solver s = new Solver();		s.Solve(l, new ONE_CLASS_Q(prob,param), zeros, ones,			alpha, 1.0, 1.0, param.eps, si, param.shrinking);	}	private static void solve_epsilon_svr(svm_problem prob, svm_parameter param,					double[] alpha, Solver.SolutionInfo si)	{		int l = prob.l;		double[] alpha2 = new double[2*l];		double[] linear_term = new double[2*l];		byte[] y = new byte[2*l];		int i;		for(i=0;i<l;i++)		{			alpha2[i] = 0;			linear_term[i] = param.p - prob.y[i];			y[i] = 1;			alpha2[i+l] = 0;			linear_term[i+l] = param.p + prob.y[i];			y[i+l] = -1;		}		Solver s = new Solver();		s.Solve(2*l, new SVR_Q(prob,param), linear_term, y,			alpha2, param.C, param.C, param.eps, si, param.shrinking);		double sum_alpha = 0;		for(i=0;i<l;i++)		{			alpha[i] = alpha2[i] - alpha2[i+l];			sum_alpha += Math.abs(alpha[i]);		}		System.out.print("nu = "+sum_alpha/(param.C*l)+"\n");	}	private static void solve_nu_svr(svm_problem prob, svm_parameter param,					double[] alpha, Solver.SolutionInfo si)	{		int l = prob.l;		double C = param.C;		double[] alpha2 = new double[2*l];		double[] linear_term = new double[2*l];		byte[] y = new byte[2*l];		int i;		double sum = C * param.nu * l / 2;		for(i=0;i<l;i++)		{			alpha2[i] = alpha2[i+l] = Math.min(sum,C);			sum -= alpha2[i];						linear_term[i] = - prob.y[i];			y[i] = 1;			linear_term[i+l] = prob.y[i];			y[i+l] = -1;		}		Solver_NU s = new Solver_NU();		s.Solve(2*l, new SVR_Q(prob,param), linear_term, y,			alpha2, C, C, param.eps, si, param.shrinking);		System.out.print("epsilon = "+(-si.r)+"\n");				for(i=0;i<l;i++)			alpha[i] = alpha2[i] - alpha2[i+l];	}	//	// decision_function	//	static class decision_function	{		double[] alpha;		double rho;		};	static decision_function svm_train_one(		svm_problem prob, svm_parameter param,		double Cp, double Cn)	{		double[] alpha = new double[prob.l];		Solver.SolutionInfo si = new Solver.SolutionInfo();		switch(param.svm_type)		{			case svm_parameter.C_SVC:				solve_c_svc(prob,param,alpha,si,Cp,Cn);				break;			case svm_parameter.NU_SVC:				solve_nu_svc(prob,param,alpha,si);				break;			case svm_parameter.ONE_CLASS:				solve_one_class(prob,param,alpha,si);				break;			case svm_parameter.EPSILON_SVR:				solve_epsilon_svr(prob,param,alpha,si);				break;			case svm_parameter.NU_SVR:				solve_nu_svr(prob,param,alpha,si);				break;		}		System.out.print("obj = "+si.obj+", rho = "+si.rho+"\n");		// output SVs		int nSV = 0;		int nBSV = 0;		for(int i=0;i<prob.l;i++)		{			if(Math.abs(alpha[i]) > 0)			{				++nSV;				if(prob.y[i] > 0)				{					if(Math.abs(alpha[i]) >= si.upper_bound_p)					++nBSV;				}				else				{					if(Math.abs(alpha[i]) >= si.upper_bound_n)						++nBSV;				}			}		}		System.out.print("nSV = "+nSV+", nBSV = "+nBSV+"\n");		decision_function f = new decision_function();		f.alpha = alpha;		f.rho = si.rho;		return f;	}	// Platt's binary SVM Probablistic Output: an improvement from Lin et al.	private static void sigmoid_train(int l, double[] dec_values, double[] labels, 				  double[] probAB)	{		double A, B;		double prior1=0, prior0 = 0;		int i;		for (i=0;i<l;i++)			if (labels[i] > 0) prior1+=1;			else prior0+=1;			int max_iter=100; 	// Maximal number of iterations		double min_step=1e-10;	// Minimal step taken in line search		double sigma=1e-3;	// For numerically strict PD of Hessian		double eps=1e-5;		double hiTarget=(prior1+1.0)/(prior1+2.0);		double loTarget=1/(prior0+2.0);		double[] t= new double[l];		double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize;		double newA,newB,newf,d1,d2;		int iter; 			// Initial Point and Initial Fun Value		A=0.0; B=Math.log((prior0+1.0)/(prior1+1.0));		double fval = 0.0;		for (i=0;i<l;i++)		{			if (labels[i]>0) t[i]=hiTarget;			else t[i]=loTarget;			fApB = dec_values[i]*A+B;			if (fApB>=0)				fval += t[i]*fApB + Math.log(1+Math.exp(-fApB));			else				fval += (t[i] - 1)*fApB +Math.log(1+Math.exp(fApB));		}		for (iter=0;iter<max_iter;iter++)		{			// Update Gradient and Hessian (use H' = H + sigma I)			h11=sigma; // numerically ensures strict PD			h22=sigma;			h21=0.0;g1=0.0;g2=0.0;			for (i=0;i<l;i++)			{				fApB = dec_values[i]*A+B;				if (fApB >= 0)				{					p=Math.exp(-fApB)/(1.0+Math.exp(-fApB));					q=1.0/(1.0+Math.exp(-fApB));				}				else				{					p=1.0/(1.0+Math.exp(fApB));					q=Math.exp(fApB)/(1.0+Math.exp(fApB));				}				d2=p*q;				h11+=dec_values[i]*dec_values[i]*d2;				h22+=d2;				h21+=dec_values[i]*d2;				d1=t[i]-p;				g1+=dec_values[i]*d1;				g2+=d1;			}			// Stopping Criteria			if (Math.abs(g1)<eps && Math.abs(g2)<eps)				break;						// Finding Newton direction: -inv(H') * g			det=h11*h22-h21*h21;			dA=-(h22*g1 - h21 * g2) / det;			dB=-(-h21*g1+ h11 * g2) / det;			gd=g1*dA+g2*dB;			stepsize = 1; 		// Line Search			while (stepsize >= min_step)			{				newA = A + stepsize * dA;				newB = B + stepsize * dB;				// New function value				newf = 0.0;				for (i=0;i<l;i++)				{					fApB = dec_values[i]*newA+newB;					if (fApB >= 0)						newf += t[i]*fApB + Math.log(1+Math.exp(-fApB));					else						newf += (t[i] - 1)*fApB +Math.log(1+Math.exp(fApB));				}				// Check sufficient decrease				if (newf<fval+0.0001*stepsize*gd)				{					A=newA;B=newB;fval=newf;					break;				}				else					stepsize = stepsize / 2.0;			}						if (stepsize < min_step)			{				System.err.print("Line search fails in two-class probability estimates\n");				break;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -