⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 jdhuff.c

📁 基于Linux的ffmepg decoder
💻 C
📖 第 1 页 / 共 3 页
字号:
#define MIN_GET_BITS  15	/* minimum allowable value */#else#define MIN_GET_BITS  (BIT_BUF_SIZE-7)#endifGLOBAL(boolean)jpeg_fill_bit_buffer (bitread_working_state * state,		      register bit_buf_type get_buffer, register int bits_left,		      int nbits)/* Load up the bit buffer to a depth of at least nbits */{  /* Copy heavily used state fields into locals (hopefully registers) */  register const JOCTET * next_input_byte = state->next_input_byte;  register size_t bytes_in_buffer = state->bytes_in_buffer;  j_decompress_ptr cinfo = state->cinfo;    /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */  /* (It is assumed that no request will be for more than that many bits.) */  /* We fail to do so only if we hit a marker or are forced to suspend. */  if (cinfo->unread_marker == 0) {	/* cannot advance past a marker */    while (bits_left < MIN_GET_BITS) {      register int c;      /* Attempt to read a byte */      if (bytes_in_buffer == 0) {	if (! (*cinfo->src->fill_input_buffer) (cinfo))	  return FALSE;	  next_input_byte = cinfo->src->next_input_byte;	  bytes_in_buffer = cinfo->src->bytes_in_buffer;      }      bytes_in_buffer--;      c = GETJOCTET(*next_input_byte++);            /* If it's 0xFF, check and discard stuffed zero byte */      if (c == 0xFF) {	/* Loop here to discard any padding FF's on terminating marker,	 * so that we can save a valid unread_marker value.  NOTE: we will	 * accept multiple FF's followed by a 0 as meaning a single FF data	 * byte.  This data pattern is not valid according to the standard.	 */	do {	  if (bytes_in_buffer == 0) {	    if (! (*cinfo->src->fill_input_buffer) (cinfo))	      return FALSE;	    next_input_byte = cinfo->src->next_input_byte;	    bytes_in_buffer = cinfo->src->bytes_in_buffer;	  }	  bytes_in_buffer--;	  c = GETJOCTET(*next_input_byte++);	} while (c == 0xFF);	if (c == 0) {	  /* Found FF/00, which represents an FF data byte */	  c = 0xFF;	} else {	  /* Oops, it's actually a marker indicating end of compressed data.	   * Save the marker code for later use.	   * Fine point: it might appear that we should save the marker into	   * bitread working state, not straight into permanent state.  But	   * once we have hit a marker, we cannot need to suspend within the	   * current MCU, because we will read no more bytes from the data	   * source.  So it is OK to update permanent state right away.	   */	  cinfo->unread_marker = c;	  /* See if we need to insert some fake zero bits. */	  goto no_more_bytes;	}      }      /* OK, load c into get_buffer */      get_buffer = (get_buffer << 8) | c;      bits_left += 8;    } /* end while */  } else {  no_more_bytes:    /* We get here if we've read the marker that terminates the compressed     * data segment.  There should be enough bits in the buffer register     * to satisfy the request; if so, no problem.     */    if (nbits > bits_left) {      /* Uh-oh.  Report corrupted data to user and stuff zeroes into       * the data stream, so that we can produce some kind of image.       * We use a nonvolatile flag to ensure that only one warning message       * appears per data segment.       */      if (! cinfo->entropy->insufficient_data) {	WARNMS(cinfo, JWRN_HIT_MARKER);	cinfo->entropy->insufficient_data = TRUE;      }      /* Fill the buffer with zero bits */      get_buffer <<= MIN_GET_BITS - bits_left;      bits_left = MIN_GET_BITS;    }  }  /* Unload the local registers */  state->next_input_byte = next_input_byte;  state->bytes_in_buffer = bytes_in_buffer;  state->get_buffer = get_buffer;  state->bits_left = bits_left;  return TRUE;}/* * Out-of-line code for Huffman code decoding. * See jdhuff.h for info about usage. */GLOBAL(int)jpeg_huff_decode (bitread_working_state * state,		  register bit_buf_type get_buffer, register int bits_left,		  d_derived_tbl * htbl, int min_bits){  register int l = min_bits;  register INT32 code;  /* HUFF_DECODE has determined that the code is at least min_bits */  /* bits long, so fetch that many bits in one swoop. */  CHECK_BIT_BUFFER(*state, l, return -1);  code = GET_BITS(l);  /* Collect the rest of the Huffman code one bit at a time. */  /* This is per Figure F.16 in the JPEG spec. */  while (code > htbl->maxcode[l]) {    code <<= 1;    CHECK_BIT_BUFFER(*state, 1, return -1);    code |= GET_BITS(1);    l++;  }  /* Unload the local registers */  state->get_buffer = get_buffer;  state->bits_left = bits_left;  /* With garbage input we may reach the sentinel value l = 17. */  if (l > 16) {    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);    return 0;			/* fake a zero as the safest result */  }  return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];}/* * Figure F.12: extend sign bit. * On some machines, a shift and add will be faster than a table lookup. */#ifdef AVOID_TABLES#define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))#else#define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))static const int extend_test[16] =   /* entry n is 2**(n-1) */  { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,    0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */  { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,    ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,    ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,    ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };#endif /* AVOID_TABLES *//* * Check for a restart marker & resynchronize decoder. * Returns FALSE if must suspend. */LOCAL(boolean)process_restart (j_decompress_ptr cinfo){  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;  //int ci;  /* Throw away any unused bits remaining in bit buffer; */  /* include any full bytes in next_marker's count of discarded bytes */  //cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;  //entropy->bitstate.bits_left = 0;  /* Advance past the RSTn marker */  //if (! (*cinfo->marker->read_restart_marker) (cinfo))  //  return FALSE;  /* Re-initialize DC predictions to 0 */  //for (ci = 0; ci < cinfo->comps_in_scan; ci++)  //  entropy->saved.last_dc_val[ci] = 0;  /* Reset restart counter */  entropy->restarts_to_go = cinfo->restart_interval;  // added by Leo  entropy->restart_flag=TRUE; // initalize the restart interval flag to TRUE  /* Reset out-of-data flag, unless read_restart_marker left us smack up   * against a marker.  In that case we will end up treating the next data   * segment as empty, and we can avoid producing bogus output pixels by   * leaving the flag set.   */  //if (cinfo->unread_marker == 0)  //  entropy->pub.insufficient_data = FALSE;    //cinfo->invalid_next_restart_marker=FALSE;  return TRUE;}/* * Decode and return one MCU's worth of Huffman-compressed coefficients. * The coefficients are reordered from zigzag order into natural array order, * but are not dequantized. * * The i'th block of the MCU is stored into the block pointed to by * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER. * (Wholesale zeroing is usually a little faster than retail...) * * Returns FALSE if data source requested suspension.  In that case no * changes have been made to permanent state.  (Exception: some output * coefficients may already have been assigned.  This is harmless for * this module, since we'll just re-assign them on the next call.) */METHODDEF(boolean)decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data){  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;  int blkn;  BITREAD_STATE_VARS;  savable_state state;  /* Process restart marker if needed; may have to suspend */  if (cinfo->restart_interval) {    if (entropy->restarts_to_go == 0)      if (! process_restart(cinfo))        return FALSE;  }  /* If we've run out of data, just leave the MCU set to zeroes.   * This way, we return uniform gray for the remainder of the segment.   */  if (! entropy->pub.insufficient_data) {    /* Load up working state */    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);    ASSIGN_STATE(state, entropy->saved);    /* Outer loop handles each block in the MCU */    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {      JBLOCKROW block = MCU_data[blkn];      d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];      d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];      register int s, k, r;      /* Decode a single block's worth of coefficients */      /* Section F.2.2.1: decode the DC coefficient difference */      HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);      if (s) {	    CHECK_BIT_BUFFER(br_state, s, return FALSE);	    r = GET_BITS(s);	    s = HUFF_EXTEND(r, s);      }      if (entropy->dc_needed[blkn]) {	    /* Convert DC difference to actual value, update last_dc_val */	    int ci = cinfo->MCU_membership[blkn];	    s += state.last_dc_val[ci];	    state.last_dc_val[ci] = s;	    /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */	    (*block)[0] = (JCOEF) s;      }      if (entropy->ac_needed[blkn]) {	/* Section F.2.2.2: decode the AC coefficients */	/* Since zeroes are skipped, output area must be cleared beforehand */	for (k = 1; k < DCTSIZE2; k++) {	  HUFF_DECODE(s, br_state, actbl, return FALSE, label2);	  r = s >> 4;	  s &= 15;	  if (s) {	    k += r;	    CHECK_BIT_BUFFER(br_state, s, return FALSE);	    r = GET_BITS(s);	    s = HUFF_EXTEND(r, s);	    /* Output coefficient in natural (dezigzagged) order.	     * Note: the extra entries in jpeg_natural_order[] will save us	     * if k >= DCTSIZE2, which could happen if the data is corrupted.	     */	    (*block)[jpeg_natural_order[k]] = (JCOEF) s;	  } else {	    if (r != 15)	      break;	    k += 15;	  }	}      } else {	/* Section F.2.2.2: decode the AC coefficients */	/* In this path we just discard the values */	for (k = 1; k < DCTSIZE2; k++) {	  HUFF_DECODE(s, br_state, actbl, return FALSE, label3);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -