⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 demo.c

📁 基于Linux的ffmepg decoder
💻 C
字号:
#include <stdio.h>
#include <stdlib.h>
#include "jpeg_dec.h"
#ifdef LINUX
#include "../../faraday_mpeg4_common/dev_mem.h"
#define mFa526CleanInvalidateDCacheAll()
#else
// Clean & Invalidate all D-cache
#define mFa526CleanInvalidateDCacheAll()	\
__asm {							            \
        MCR p15, 0, 0, c7, c14, 0			\
}
#endif
void *TM_DmaMalloc(unsigned int size,unsigned char align_size,unsigned char reserved_size,void ** phy_ptr);
void  TM_DmaFree(void * virt_ptr, void * phy_ptr);

// the exit entry point
void exit_main(void);

int main(int argc, char **argv)
{
  unsigned char *pbitstream_phy_addr,*pbitstream_virt_addr;
  unsigned char *yuv_phy_addr[3],*yuv_virt_addr[3];
  unsigned int bitstream_size;
  void *dec_handle;
  int ci; // component index
  FJPEG_DEC_PARAM dec_param;
  FJPEG_DEC_RESULT dec_result;
  FILE *in_file,*out_file;
  unsigned char * base;

  if (argc != 3) {
     printf ("usage: jpeg_decoder input_jpg_file output_yuv_file\n");
     exit(1);
  }
  // open input YUV file, the YUV data file is arranged in 2D format
  if((in_file=fopen(argv[1],"rb"))==NULL) {
    printf ("Can't open file %s\n", argv[1]);
    exit(1);
  }

  // open output bitstream file
  if((out_file=fopen(argv[2],"wb"))==NULL) {
    printf ("Can't open file %s\n", argv[2]);
    exit(1);
  }

  // let's calculate the bitstream file size
  if(fseek(in_file,0,SEEK_END))  exit(1);
  if((bitstream_size=ftell(in_file))==-1)  exit(1);  
  rewind(in_file); // rewind the input bitstream file
  
  // allocate the input bitstream buffer with 4-byte aligned (32-bit alignment)
  // and obtain the physical address and virtual address
  if((pbitstream_virt_addr=(unsigned char*)TM_DmaMalloc(bitstream_size,4,16,&pbitstream_phy_addr))==NULL)
    exit(1);

  // to read the jpeg bitstream file to the allocated memory space
  if(fread(pbitstream_virt_addr,sizeof(unsigned char),bitstream_size,in_file)!=bitstream_size)
    exit(1);
  // let's flush the D-cache
  mFa526CleanInvalidateDCacheAll();  

#ifdef LINUX
  base = (unsigned char *)ioremap(0x90700000, 0x100000);
  if (base == 0) {			/// maping failure
	printf("mpeg4 maping failure\n");
	return -1;
  }
  printf("jpeg virt addr = 0x%x\n", (int)base);
#else
  base = 0x90700000;
#endif
  // set the decoding parameters
//  dec_param.pu32BaseAddr=(unsigned char *)0x90e00000;
  dec_param.pu32BaseAddr= base;
  dec_param.pu8BitstreamAddr=pbitstream_phy_addr;
  dec_param.pfnDmaMalloc = TM_DmaMalloc;	// ben add
  dec_param.pfnDmaFree = TM_DmaFree;		// ben add
  
  // to create the jpeg decoder object
  dec_handle=FJpegDecCreate(&dec_param);
  if(!dec_handle) exit(1);
  
  // to read the header of jpeg bitstream and get the yuv image information from   
  // variable 'dec_result' which is data type FJPEG_DEC_RESULT structure.
  // Only after reading JPEG header can we know the component number and size information,
  // so we should read the JPEG header in the first place before starting decoding.
  FJpegDecReadHeader(dec_handle,&dec_result);
  
   // set the number of components according after reading the header informations  
  dec_param.u8NumComponents=dec_result.u8NumComponents;
  
  for(ci=0; ci<dec_result.u8NumComponents; ci++)
    {
      // depending on the number of components of this JPEG bitstream, we can allocate
      // output buffer space of each component according to the returned informations in
      // 'dec_result' variable.
      // Note that the allocated YUV buffer space must be 8-byte aligned with physical address.
      if((yuv_virt_addr[ci]=(unsigned char *)TM_DmaMalloc(dec_result.rgComponentInfo[ci].m_u32ComponentTotalSize,8,16,&yuv_phy_addr[ci]))==NULL)
        exit(1);
      dec_param.pu8YUVAddr[ci]=yuv_phy_addr[ci];
    }
  // let's flush the D-cache
  mFa526CleanInvalidateDCacheAll();
  
  // to begin to decode the jpeg bitstream and get the yuv image information from   
  // variable dec_result with data type FJPEG_DEC_RESULT structure
  FJpegDecDecode(dec_handle,&dec_param);
  
  // analyze the dec_result data structure in order to get the information of YUV output image
  for(ci=0; ci<dec_result.u8NumComponents; ci++)
    {
      // write each component of YUV to the file
      fwrite(yuv_virt_addr[ci],sizeof(unsigned char),dec_result.rgComponentInfo[ci].m_u32ComponentTotalSize,out_file);
    }
    
  // release the JPEG decoder object
  FJpegDecDestroy(dec_handle);
  
  // free the allocated YUV output aligned buffer
  for(ci=0; ci<dec_result.u8NumComponents; ci++)
    TM_DmaFree(yuv_virt_addr[ci],yuv_phy_addr[ci]);
  // free the allocated JPEG bitstream aligned buffer
  TM_DmaFree(pbitstream_virt_addr,pbitstream_phy_addr);
  
  // close output YUV file
  fclose(out_file);    
  // close input bitstream file
  fclose(in_file);

  // to the end of encoding
  printf("Image width = %d, height = %d\n", dec_result.u32ImageWidth, dec_result.u32ImageHeight);
  printf("JPEG decoding is done. See the output file.\n");
//  exit_main();
}
#ifndef LINUX
int dma_malloc(int size, void ** phy, void ** virt, void ** virt_ret)
{
	*phy = *virt = (void *) malloc(size);
	if (*virt != NULL)
		return 0;	//ok
	else
		return -1;//fail
}

int dma_free(unsigned int size, void * phy, void * virt, void *virt_ret)
{
	free ((unsigned char *)virt);
	return 0;	//ok
}
#endif
void * TM_DmaMalloc(unsigned int size,unsigned char align_size,unsigned char reserved_size,void ** phy_ptr)
{
	unsigned char *virt_mem_ptr;
	unsigned char *virt_ret;

	if (!align_size) {
		size += (reserved_size + 9);
	   	if (dma_malloc(size, phy_ptr, (void **)&virt_mem_ptr, (void **)&virt_ret) == 0) {
			/* Store (mem_ptr - "real allocated memory") in *(mem_ptr-9) */
			*(virt_mem_ptr + 0) = 9;
			/* Store (malloc size) in *(mem_ptr-8) ~ *(mem_ptr-5)*/
			*(virt_mem_ptr + 1) = (size >> 24) & 0xFF;
			*(virt_mem_ptr + 2) = (size >> 16) & 0xFF;
			*(virt_mem_ptr + 3) = (size >> 8) & 0xFF;
			*(virt_mem_ptr + 4) = (size >> 0) & 0xFF;
			/* Store (virt_ret at consistent_alloc) in *(mem_ptr-4) ~ *(mem_ptr-1)*/
			*(virt_mem_ptr + 5) = ((unsigned int)virt_ret >> 24) & 0xFF;
			*(virt_mem_ptr + 6) = ((unsigned int)virt_ret >> 16) & 0xFF;
			*(virt_mem_ptr + 7) = ((unsigned int)virt_ret >> 8) & 0xFF;
			*(virt_mem_ptr + 8) = ((unsigned int)virt_ret >> 0) & 0xFF;
			*(unsigned int *)phy_ptr += 9;
			/* Return the mem_ptr pointer */
			return (void *) (virt_mem_ptr + 9);
		}
	}
	else {
		unsigned char *tmp;

		/*
		 * Allocate the required size memory + alignment so we
		 * can realign the data if necessary
		 */
		size += (reserved_size + align_size + 8);
	   	if (dma_malloc(size, phy_ptr, (void **)&tmp, (void **)&virt_ret) == 0) {

			/* Align the tmp pointer */
			virt_mem_ptr =
				(unsigned char *) ((unsigned int) (tmp + 8 + align_size - 1) &
							 (~(unsigned int) (align_size - 1)));

			/*
			 * Special case where malloc have already satisfied the alignment
			 * We must add alignment to mem_ptr because we must store
			 * (mem_ptr - tmp) in *(mem_ptr-1)
			 * If we do not add alignment to mem_ptr then *(mem_ptr-1) points
			 * to a forbidden memory space
			 */
			while ((virt_mem_ptr - tmp) <= 8)
				virt_mem_ptr += align_size;
			*(unsigned int *)phy_ptr += (virt_mem_ptr - tmp);

			/*
			 * (mem_ptr - tmp) is stored in *(mem_ptr-1) so we are able to retrieve
			 * the real malloc block allocated and free it in xvid_free
			 */
			/* Store (mem_ptr - "real allocated memory") in *(mem_ptr-5) */
			*(virt_mem_ptr - 9) = (unsigned char) (virt_mem_ptr - tmp);
			/* Store (malloc size) in *(mem_ptr-8) ~ *(mem_ptr-5)*/
			*(virt_mem_ptr - 8) = (size >> 24) & 0xFF;
			*(virt_mem_ptr - 7) = (size >> 16) & 0xFF;
			*(virt_mem_ptr - 6) = (size >> 8) & 0xFF;
			*(virt_mem_ptr - 5) = (size >> 0) & 0xFF;
			/* Store (virt_ret at consistent_alloc) in *(mem_ptr-4) ~ *(mem_ptr-1)*/
			*(virt_mem_ptr - 4) = ((unsigned int)virt_ret >> 24) & 0xFF;
			*(virt_mem_ptr - 3) = ((unsigned int)virt_ret >> 16) & 0xFF;
			*(virt_mem_ptr - 2) = ((unsigned int)virt_ret >> 8) & 0xFF;
			*(virt_mem_ptr - 1) = ((unsigned int)virt_ret >> 0) & 0xFF;

			/* Return the aligned pointer */
			return (void *) virt_mem_ptr;
		}
	}

	return NULL;
}

void TM_DmaFree(void * virt_ptr, void * phy_ptr)
{
	unsigned int tsize;
	unsigned char *virt_ret;
	unsigned char offset;

	/* *(virt_mem_ptr - 1) give us the offset to the real malloc block */
	if (virt_ptr) {
		offset = *(unsigned char *) ((unsigned int) virt_ptr - 9);
		tsize = (*(unsigned char *)((unsigned int) virt_ptr - 8) << 24) +
		  	(*(unsigned char *)((unsigned int) virt_ptr - 7) << 16) +
			(*(unsigned char *)((unsigned int) virt_ptr - 6) << 8) +
			(*(unsigned char *)((unsigned int) virt_ptr - 5) << 0);
		virt_ret = (unsigned char*)((*(unsigned char *)((unsigned int) virt_ptr - 4) << 24) +
						(*(unsigned char *)((unsigned int) virt_ptr - 3) << 16) +
						(*(unsigned char *)((unsigned int) virt_ptr - 2) << 8) +
						(*(unsigned char *)((unsigned int) virt_ptr - 1) << 0));
		dma_free(tsize,								// total size
				(void *)((unsigned int) phy_ptr - offset),	// original phy point
				(void *)((unsigned int) virt_ptr - offset),		// original virt point
				virt_ret);					// 
 	}
}

void exit_main(void)
{
  while(1) ; 
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -