📄 demo.c
字号:
#include <stdio.h>
#include <stdlib.h>
#include "jpeg_dec.h"
#ifdef LINUX
#include "../../faraday_mpeg4_common/dev_mem.h"
#define mFa526CleanInvalidateDCacheAll()
#else
// Clean & Invalidate all D-cache
#define mFa526CleanInvalidateDCacheAll() \
__asm { \
MCR p15, 0, 0, c7, c14, 0 \
}
#endif
void *TM_DmaMalloc(unsigned int size,unsigned char align_size,unsigned char reserved_size,void ** phy_ptr);
void TM_DmaFree(void * virt_ptr, void * phy_ptr);
// the exit entry point
void exit_main(void);
int main(int argc, char **argv)
{
unsigned char *pbitstream_phy_addr,*pbitstream_virt_addr;
unsigned char *yuv_phy_addr[3],*yuv_virt_addr[3];
unsigned int bitstream_size;
void *dec_handle;
int ci; // component index
FJPEG_DEC_PARAM dec_param;
FJPEG_DEC_RESULT dec_result;
FILE *in_file,*out_file;
unsigned char * base;
if (argc != 3) {
printf ("usage: jpeg_decoder input_jpg_file output_yuv_file\n");
exit(1);
}
// open input YUV file, the YUV data file is arranged in 2D format
if((in_file=fopen(argv[1],"rb"))==NULL) {
printf ("Can't open file %s\n", argv[1]);
exit(1);
}
// open output bitstream file
if((out_file=fopen(argv[2],"wb"))==NULL) {
printf ("Can't open file %s\n", argv[2]);
exit(1);
}
// let's calculate the bitstream file size
if(fseek(in_file,0,SEEK_END)) exit(1);
if((bitstream_size=ftell(in_file))==-1) exit(1);
rewind(in_file); // rewind the input bitstream file
// allocate the input bitstream buffer with 4-byte aligned (32-bit alignment)
// and obtain the physical address and virtual address
if((pbitstream_virt_addr=(unsigned char*)TM_DmaMalloc(bitstream_size,4,16,&pbitstream_phy_addr))==NULL)
exit(1);
// to read the jpeg bitstream file to the allocated memory space
if(fread(pbitstream_virt_addr,sizeof(unsigned char),bitstream_size,in_file)!=bitstream_size)
exit(1);
// let's flush the D-cache
mFa526CleanInvalidateDCacheAll();
#ifdef LINUX
base = (unsigned char *)ioremap(0x90700000, 0x100000);
if (base == 0) { /// maping failure
printf("mpeg4 maping failure\n");
return -1;
}
printf("jpeg virt addr = 0x%x\n", (int)base);
#else
base = 0x90700000;
#endif
// set the decoding parameters
// dec_param.pu32BaseAddr=(unsigned char *)0x90e00000;
dec_param.pu32BaseAddr= base;
dec_param.pu8BitstreamAddr=pbitstream_phy_addr;
dec_param.pfnDmaMalloc = TM_DmaMalloc; // ben add
dec_param.pfnDmaFree = TM_DmaFree; // ben add
// to create the jpeg decoder object
dec_handle=FJpegDecCreate(&dec_param);
if(!dec_handle) exit(1);
// to read the header of jpeg bitstream and get the yuv image information from
// variable 'dec_result' which is data type FJPEG_DEC_RESULT structure.
// Only after reading JPEG header can we know the component number and size information,
// so we should read the JPEG header in the first place before starting decoding.
FJpegDecReadHeader(dec_handle,&dec_result);
// set the number of components according after reading the header informations
dec_param.u8NumComponents=dec_result.u8NumComponents;
for(ci=0; ci<dec_result.u8NumComponents; ci++)
{
// depending on the number of components of this JPEG bitstream, we can allocate
// output buffer space of each component according to the returned informations in
// 'dec_result' variable.
// Note that the allocated YUV buffer space must be 8-byte aligned with physical address.
if((yuv_virt_addr[ci]=(unsigned char *)TM_DmaMalloc(dec_result.rgComponentInfo[ci].m_u32ComponentTotalSize,8,16,&yuv_phy_addr[ci]))==NULL)
exit(1);
dec_param.pu8YUVAddr[ci]=yuv_phy_addr[ci];
}
// let's flush the D-cache
mFa526CleanInvalidateDCacheAll();
// to begin to decode the jpeg bitstream and get the yuv image information from
// variable dec_result with data type FJPEG_DEC_RESULT structure
FJpegDecDecode(dec_handle,&dec_param);
// analyze the dec_result data structure in order to get the information of YUV output image
for(ci=0; ci<dec_result.u8NumComponents; ci++)
{
// write each component of YUV to the file
fwrite(yuv_virt_addr[ci],sizeof(unsigned char),dec_result.rgComponentInfo[ci].m_u32ComponentTotalSize,out_file);
}
// release the JPEG decoder object
FJpegDecDestroy(dec_handle);
// free the allocated YUV output aligned buffer
for(ci=0; ci<dec_result.u8NumComponents; ci++)
TM_DmaFree(yuv_virt_addr[ci],yuv_phy_addr[ci]);
// free the allocated JPEG bitstream aligned buffer
TM_DmaFree(pbitstream_virt_addr,pbitstream_phy_addr);
// close output YUV file
fclose(out_file);
// close input bitstream file
fclose(in_file);
// to the end of encoding
printf("Image width = %d, height = %d\n", dec_result.u32ImageWidth, dec_result.u32ImageHeight);
printf("JPEG decoding is done. See the output file.\n");
// exit_main();
}
#ifndef LINUX
int dma_malloc(int size, void ** phy, void ** virt, void ** virt_ret)
{
*phy = *virt = (void *) malloc(size);
if (*virt != NULL)
return 0; //ok
else
return -1;//fail
}
int dma_free(unsigned int size, void * phy, void * virt, void *virt_ret)
{
free ((unsigned char *)virt);
return 0; //ok
}
#endif
void * TM_DmaMalloc(unsigned int size,unsigned char align_size,unsigned char reserved_size,void ** phy_ptr)
{
unsigned char *virt_mem_ptr;
unsigned char *virt_ret;
if (!align_size) {
size += (reserved_size + 9);
if (dma_malloc(size, phy_ptr, (void **)&virt_mem_ptr, (void **)&virt_ret) == 0) {
/* Store (mem_ptr - "real allocated memory") in *(mem_ptr-9) */
*(virt_mem_ptr + 0) = 9;
/* Store (malloc size) in *(mem_ptr-8) ~ *(mem_ptr-5)*/
*(virt_mem_ptr + 1) = (size >> 24) & 0xFF;
*(virt_mem_ptr + 2) = (size >> 16) & 0xFF;
*(virt_mem_ptr + 3) = (size >> 8) & 0xFF;
*(virt_mem_ptr + 4) = (size >> 0) & 0xFF;
/* Store (virt_ret at consistent_alloc) in *(mem_ptr-4) ~ *(mem_ptr-1)*/
*(virt_mem_ptr + 5) = ((unsigned int)virt_ret >> 24) & 0xFF;
*(virt_mem_ptr + 6) = ((unsigned int)virt_ret >> 16) & 0xFF;
*(virt_mem_ptr + 7) = ((unsigned int)virt_ret >> 8) & 0xFF;
*(virt_mem_ptr + 8) = ((unsigned int)virt_ret >> 0) & 0xFF;
*(unsigned int *)phy_ptr += 9;
/* Return the mem_ptr pointer */
return (void *) (virt_mem_ptr + 9);
}
}
else {
unsigned char *tmp;
/*
* Allocate the required size memory + alignment so we
* can realign the data if necessary
*/
size += (reserved_size + align_size + 8);
if (dma_malloc(size, phy_ptr, (void **)&tmp, (void **)&virt_ret) == 0) {
/* Align the tmp pointer */
virt_mem_ptr =
(unsigned char *) ((unsigned int) (tmp + 8 + align_size - 1) &
(~(unsigned int) (align_size - 1)));
/*
* Special case where malloc have already satisfied the alignment
* We must add alignment to mem_ptr because we must store
* (mem_ptr - tmp) in *(mem_ptr-1)
* If we do not add alignment to mem_ptr then *(mem_ptr-1) points
* to a forbidden memory space
*/
while ((virt_mem_ptr - tmp) <= 8)
virt_mem_ptr += align_size;
*(unsigned int *)phy_ptr += (virt_mem_ptr - tmp);
/*
* (mem_ptr - tmp) is stored in *(mem_ptr-1) so we are able to retrieve
* the real malloc block allocated and free it in xvid_free
*/
/* Store (mem_ptr - "real allocated memory") in *(mem_ptr-5) */
*(virt_mem_ptr - 9) = (unsigned char) (virt_mem_ptr - tmp);
/* Store (malloc size) in *(mem_ptr-8) ~ *(mem_ptr-5)*/
*(virt_mem_ptr - 8) = (size >> 24) & 0xFF;
*(virt_mem_ptr - 7) = (size >> 16) & 0xFF;
*(virt_mem_ptr - 6) = (size >> 8) & 0xFF;
*(virt_mem_ptr - 5) = (size >> 0) & 0xFF;
/* Store (virt_ret at consistent_alloc) in *(mem_ptr-4) ~ *(mem_ptr-1)*/
*(virt_mem_ptr - 4) = ((unsigned int)virt_ret >> 24) & 0xFF;
*(virt_mem_ptr - 3) = ((unsigned int)virt_ret >> 16) & 0xFF;
*(virt_mem_ptr - 2) = ((unsigned int)virt_ret >> 8) & 0xFF;
*(virt_mem_ptr - 1) = ((unsigned int)virt_ret >> 0) & 0xFF;
/* Return the aligned pointer */
return (void *) virt_mem_ptr;
}
}
return NULL;
}
void TM_DmaFree(void * virt_ptr, void * phy_ptr)
{
unsigned int tsize;
unsigned char *virt_ret;
unsigned char offset;
/* *(virt_mem_ptr - 1) give us the offset to the real malloc block */
if (virt_ptr) {
offset = *(unsigned char *) ((unsigned int) virt_ptr - 9);
tsize = (*(unsigned char *)((unsigned int) virt_ptr - 8) << 24) +
(*(unsigned char *)((unsigned int) virt_ptr - 7) << 16) +
(*(unsigned char *)((unsigned int) virt_ptr - 6) << 8) +
(*(unsigned char *)((unsigned int) virt_ptr - 5) << 0);
virt_ret = (unsigned char*)((*(unsigned char *)((unsigned int) virt_ptr - 4) << 24) +
(*(unsigned char *)((unsigned int) virt_ptr - 3) << 16) +
(*(unsigned char *)((unsigned int) virt_ptr - 2) << 8) +
(*(unsigned char *)((unsigned int) virt_ptr - 1) << 0));
dma_free(tsize, // total size
(void *)((unsigned int) phy_ptr - offset), // original phy point
(void *)((unsigned int) virt_ptr - offset), // original virt point
virt_ret); //
}
}
void exit_main(void)
{
while(1) ;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -