📄 jccoefct.c
字号:
/* * jccoefct.c * * Copyright (C) 1994-1997, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains the coefficient buffer controller for compression. * This controller is the top level of the JPEG compressor proper. * The coefficient buffer lies between forward-DCT and entropy encoding steps. */#define JPEG_INTERNALS#include "jinclude.h"#include "jpeglib.h"#include "vpe_m.h"#include "local_mem.h"/* We use a full-image coefficient buffer when doing Huffman optimization, * and also for writing multiple-scan JPEG files. In all cases, the DCT * step is run during the first pass, and subsequent passes need only read * the buffered coefficients. */#ifdef ENTROPY_OPT_SUPPORTED#define FULL_COEF_BUFFER_SUPPORTED#else#ifdef C_MULTISCAN_FILES_SUPPORTED#define FULL_COEF_BUFFER_SUPPORTED#endif#endif/* Private buffer controller object */typedef struct { struct jpeg_c_coef_controller pub; /* public fields */ JDIMENSION iMCU_row_num; /* iMCU row # within image */ JDIMENSION mcu_ctr; /* counts MCUs processed in current row */ int MCU_vert_offset; /* counts MCU rows within iMCU row */ int MCU_rows_per_iMCU_row; /* number of such rows needed */ /* For single-pass compression, it's sufficient to buffer just one MCU * (although this may prove a bit slow in practice). We allocate a * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each * MCU constructed and sent. (On 80x86, the workspace is FAR even though * it's not really very big; this is to keep the module interfaces unchanged * when a large coefficient buffer is necessary.) * In multi-pass modes, this array points to the current MCU's blocks * within the virtual arrays. */ JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; /* In multi-pass modes, we need a virtual block array for each component. */ jvirt_barray_ptr whole_image[MAX_COMPONENTS];} my_coef_controller;typedef my_coef_controller * my_coef_ptr;LOCAL(void)start_iMCU_row (j_compress_ptr cinfo)/* Reset within-iMCU-row counters for a new row */{ my_coef_ptr coef = (my_coef_ptr) cinfo->coef; /* In an interleaved scan, an MCU row is the same as an iMCU row. * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. * But at the bottom of the image, process only what's left. */ if (cinfo->comps_in_scan > 1) { coef->MCU_rows_per_iMCU_row = 1; } else { if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; else coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; } coef->mcu_ctr = 0; coef->MCU_vert_offset = 0;}/* * Initialize for a processing pass. */METHODDEF(void)start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode){ my_coef_ptr coef = (my_coef_ptr) cinfo->coef; coef->iMCU_row_num = 0; start_iMCU_row(cinfo);}/* * Process some data in the single-pass case. * We process the equivalent of one fully interleaved MCU row ("iMCU" row) * per call, ie, v_samp_factor block rows for each component in the image. * Returns TRUE if the iMCU row is completed, FALSE if suspended. * * NB: input_buf contains a plane for each component in image, * which we index according to the component's SOF position. */boolean compress_data1 (j_compress_ptr cinfo){ my_coef_ptr coef = (my_coef_ptr) cinfo->coef; JDIMENSION MCU_col_num; /* index of current MCU within row */ JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; //unsigned int DCT_col_num; volatile MDMA *pmdma = MDMA1; int i; for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col; MCU_col_num++) { //pwhsu:20031017 For this case:0~14 if(rinfo.nCount==0){ DMA_mcu(cinfo, MCU_col_num, last_MCU_col, rinfo.Dma_bnum); while((pmdma->Status & 0x1) == 0){} pmdma->SMaddr = pmdma->CCA = (unsigned int)DMA_COMMAND_system_phy;// pmdma->LMaddr = DMA_COMMAND_local+rinfo.Dma_bnum*40; pmdma->LMaddr = DMA_COMMAND_local_OFF+rinfo.Dma_bnum*40 * 4; pmdma->BlkWidth = 0; pmdma->Control = dmactrl;//0x4B00000 | (rinfo.mcublkn)*4; //start DMA rinfo.Dma_bnum = (rinfo.Dma_bnum+1)&1; mVpe_Indicator(0x90000000 | cMCUrow<<4 | MCU_col_num); //pwhsu++:20040128 if(rinfo.nCount==rinfo.MCUnum-1) { mFa526DrainWrBuf (); while((pmdma->Status & 0x1) == 0){} mVpe_Indicator (0x90000000 | cMCUrow<<4 | MCU_col_num); //pwhsu++:20040128 pbufaddr = (unsigned int *)(cur_b0 + rinfo.Coef_bnum * stride_MCU); rinfo.Coef_bnum = (rinfo.Coef_bnum+1)&1; //switch the pixel buffer number SET_MCCADDR(pbufaddr); SET_MCCTL(mcctrl); mFa526DrainWrBuf (); do { READ_VLDSTS(vldreg); } while ((vldreg & 32) == 0); } }else if (rinfo.nCount==1){ DMA_mcu(cinfo, MCU_col_num, last_MCU_col, rinfo.Dma_bnum); //gen DMA command queue while((pmdma->Status & 0x1) == 0) //DMA process run {} pmdma->SMaddr = pmdma->CCA = (unsigned int)DMA_COMMAND_system_phy;// pmdma->LMaddr = DMA_COMMAND_local+rinfo.Dma_bnum*40; pmdma->LMaddr = DMA_COMMAND_local_OFF+rinfo.Dma_bnum*40 * 4; pmdma->BlkWidth = 0; pmdma->Control = dmactrl;//0x4B00000 | (rinfo.mcublkn)*4; //start DMA mVpe_Indicator (0x90000000 | cMCUrow<<4 | MCU_col_num); rinfo.Dma_bnum = (rinfo.Dma_bnum+1)&1; pbufaddr = (unsigned int *)(cur_b0 + rinfo.Coef_bnum * stride_MCU); //MC_go rinfo.Coef_bnum = (rinfo.Coef_bnum+1)&1; SET_MCCADDR(pbufaddr); SET_MCCTL(mcctrl); if(rinfo.nCount==rinfo.MCUnum-1){ mFa526DrainWrBuf (); while((pmdma->Status & 0x1) == 0){} mVpe_Indicator ( 0x90000000 | cMCUrow<<4 | MCU_col_num); //pwhsu++:20040128 //Check VLC is done do { READ_CPSTS(sreg); } while ((sreg & 32) == 0); //pwhsu++:2040607 VAD found bug Encode_mcu (cinfo); mFa526DrainWrBuf (); //pwhsu++:2040607 VAD found bug pbufaddr = (unsigned int *)(cur_b0 + rinfo.Coef_bnum * stride_MCU); rinfo.Coef_bnum = (rinfo.Coef_bnum+1)&1; //switch the pixel buffer number SET_MCCADDR(pbufaddr); SET_MCCTL(mcctrl); mFa526DrainWrBuf (); do { READ_CPSTS(sreg); } while ((sreg & 32) == 0); } }else { DMA_mcu(cinfo, MCU_col_num, last_MCU_col, rinfo.Dma_bnum); //gen DMA command queue mFa526DrainWrBuf (); do { READ_CPSTS(sreg); } while ((sreg & 32) == 0); Encode_mcu (cinfo); while((pmdma->Status & 0x1) == 0) //DMA process run {} pmdma->SMaddr = pmdma->CCA = (unsigned int)DMA_COMMAND_system_phy;// pmdma->LMaddr = DMA_COMMAND_local+rinfo.Dma_bnum*40; pmdma->LMaddr = DMA_COMMAND_local_OFF+rinfo.Dma_bnum*40 * 4; pmdma->BlkWidth = 0; pmdma->Control = dmactrl;//0x4B00000 | (rinfo.mcublkn)*4; //start DMA rinfo.Dma_bnum = (rinfo.Dma_bnum+1)&1; mVpe_Indicator ( 0x90000000 | cMCUrow<<4 | MCU_col_num); pbufaddr = (unsigned int *)(cur_b0 + rinfo.Coef_bnum * stride_MCU); //MC_go rinfo.Coef_bnum = (rinfo.Coef_bnum+1)&1; SET_MCCADDR(pbufaddr); SET_MCCTL(mcctrl) ; if(rinfo.nCount==rinfo.MCUnum-1){ mFa526DrainWrBuf (); //while((pmdma->Status & 0x1) == 0){} while((pmdma->Status & 0x1) == 0) //DMA process run {} mVpe_Indicator (0x90000000 | cMCUrow<<4 | MCU_col_num); do { READ_CPSTS(sreg); } while ((sreg & 32) == 0); //pwhsu++:2040607 VAD found bug Encode_mcu (cinfo); mFa526DrainWrBuf (); //pwhsu++:2040607 VAD found bug pbufaddr = (unsigned int *)(cur_b0 + rinfo.Coef_bnum * stride_MCU); rinfo.Coef_bnum = (rinfo.Coef_bnum+1)&1; //switch the pixel buffer number SET_MCCADDR(pbufaddr); SET_MCCTL(mcctrl); mFa526DrainWrBuf (); do { READ_CPSTS(sreg); } while ((sreg & 32) == 0); } } //pwhsu++:20031031 rinfo.nCount+=1;//pwhsu++:20031030 }//end of for MCU_col_num return TRUE;}/* * Initialize coefficient buffer controller. */GLOBAL(void)jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer){ my_coef_ptr coef; coef = (my_coef_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_coef_controller)); cinfo->coef = (struct jpeg_c_coef_controller *) coef; coef->pub.start_pass = start_pass_coef;}voidDMA_mcu(j_compress_ptr cinfo,unsigned int MCU_col_num, unsigned int last_MCU_col, int dbnum){ int blkn, xpos, ypos, bi, ci, blockcnt, yindex; jpeg_component_info *compptr; int cmdidx; unsigned char* puchexin, *pucdataptr; unsigned int uintpos; int sysdataidx; blkn = 0; sysdataidx = dbnum*40; for (ci = 0; ci < cinfo->comps_in_scan; ci++) { puchexin = curdata[ci]; compptr = cinfo->cur_comp_info[ci]; blockcnt = compptr->MCU_width; xpos = MCU_col_num * compptr->MCU_sample_width; ypos = 0; for (yindex = 0; yindex < compptr->MCU_height; yindex++) { uintpos = puchexin + (ypos+cMCUrow*mcu_height[ci])*comp_width[ci]; for (bi = 0; bi < blockcnt; bi++, xpos += DCTSIZE) { //DMA_access(ypos ,xpos, blkn, bi, dbnum, ci/*, cmdidx*/); pucdataptr = uintpos + xpos; //DMA_COMMAND_local[0+(blkn+bi)*4+dbnum*40] = (unsigned int) pucdataptr; DMA_COMMAND_local[sysdataidx] = (unsigned int) pucdataptr; //puchexin += (start_row + (cMCUrow*v_sampf[ci])*8) * (comp_width[ci]) + start_col; //DMA_COMMAND_local[0+(blkn+bi)*4+dbnum*40] = (unsigned int) puchexin; //move one block per comment //BlkWidth //DMA_COMMAND_local[2+(blkn+bi)*4+dbnum*40] = ((( cinfo->MCUs_per_row * blockcnt)*2-1)<<8) | 0x02; sysdataidx += 4; } //end of block num xpos = MCU_col_num * compptr->MCU_sample_width; blkn += compptr->MCU_width; ypos += DCTSIZE; }// end of yindex }// end of ci}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -