📄 draft-herlein-avt-rtp-speex-00.txt
字号:
Jean-Marc Valin <jean-marc.valin@hermes.usherb.ca> Intended usage: COMMON Author/Change controller: Author: Greg Herlein <gherlein@herlein.com> Change controller: Greg Herlein <gherlein@herlein.com> This transport type signifies that the content is to be interpreted according to this document if the contents are transmitted over RTP. Should this transport type appear over a lossless streaming protocol such as TCP, the content encapsulation should be interpreted as an Ogg Stream in accordance with RFC 3534, with the exception that the content of the Ogg Stream may be assumed to be Speex audio and Speex audio only.5. SDP usage of Speex When conveying information by SDP [4], the encoding name MUST be set to "speex". An example of the media representation in SDP for offering a single channel of Speex at 8000 samples per second might be: m=audio 8088 RTP/AVP 97 a=rtpmap:97 speex/8000 Note that the RTP payload type code of 97 is defined in this media definition to be 'mapped' to the speex codec at an 8kHz sampling frequency using the 'a=rtpmap' line. Any number from 96 to 127 could have been chosen (the allowed range for dynamic types). Herlein, Valin, et. al. Expires September 3, 2004 [Page 6]^LInternet-Draft draft-herlein-avt-rtp-speex-00.txt March 3, 2004 The value of the sampling frequency is typically 8000 for narrow band operation, 16000 for wide band operation, and 32000 for ultra-wide band operation. If for some reason the offerer has bandwidth limitations, the client may use the "b=" header, as explained in SDP [4]. The following example illustrates the case where the offerer cannot receive more than 10 kbit/s. m=audio 8088 RTP/AVP 97 b=AS:10 a=rtmap:97 speex/8000 In this case, if the remote part agrees, it should configure its Speex encoder so that it does not use modes that produce more than 10 kbit/s. Note that the "b=" constraint also applies on all payload types that may be proposed in the media line ("m="). An other way to make recommendations to the remote Speex encoder is to use its specific parameters via the a=fmtp: directive. The following parameters are defined for use in this way: ptime: duration of each packet in milliseconds. sr: actual sample rate in Hz. ebw: encoding bandwidth - either 'narrow' or 'wide' or 'ultra' (corresponds to nominal 8000, 16000, and 32000 Hz sampling rates). vbr: variable bit rate - either 'on' 'off' or 'vad' (defaults to off). If on, variable bit rate is enabled. If off, disabled. If set to 'vad' then constant bit rate is used but silence will be encoded with special short frames to indicate a lack of voice for that period. cng: comfort noise generation - either 'on' or 'off'. If off then silence frames will be silent; if 'on' then those frames will be filled with comfort noise. mode: Speex encoding mode. Can be {1,2,3,4,5,6,any} defaults to 3 in narrowband, 6 in wide and ultra-wide. penh: use of perceptual enhancement. 1 indicates to the decoder that perceptual enhancement is recommended, 0 indicates that it is not. Defaults to on (1).Herlein, Valin, et. al. Expires September 3, 2004 [Page 7]^LInternet-Draft draft-herlein-avt-rtp-speex-00.txt March 3, 2004 Examples: m=audio 8008 RTP/AVP 97 a=rtpmap:97 speex/8000 a=fmtp:97 mode=4 This examples illustrate an offerer that wishes to receive a Speex stream at 8000Hz, but only using speex mode 3. The offerer may suggest to the remote decoder to activate its perceptual enhancement filter like this: m=audio 8088 RTP/AVP 97 a=rtmap:97 speex/8000 a=fmtp:97 penh=1 Several Speex specific parameters can be given in a single a=fmtp line provided that they are separated by a semi-colon: a=fmtp:97 mode=any;penh=1 The offerer may indicate that it wishes to send variable bit rate frames with comfort noise: m=audio 8088 RTP/AVP 97 a=rtmap:97 speex/8000 a=fmtp:97 vbr=on;cng=on The "ptime" attribute is used to denote the packetization interval (ie, how many milliseconds of audio is encoded in a single RTP packet). Since Speex uses 20 msec frames, ptime values of multiples of 20 denote multiple Speex frames per packet. Values of ptime which are not multiples of 20 MUST be ignored and clients MUST use the default value of 20 instead. In the example below the ptime value is set to 40, indicating that there are 2 frames in each packet. m=audio 8008 RTP/AVP 97 a=rtpmap:97 speex/8000 a=ptime:40 Note that the ptime parameter applies to all payloads listed in the media line and is not used as part of an a=fmtp directive. Values of ptime not multiple of 20 msec are meaningless, so the receiver of such ptime values MUST ignore them. If during the life of an RTP session the ptime value changes, when there are multiple Speex frames for example, the SDP value must also reflect the new value. Herlein, Valin, et. al. Expires September 3, 2004 [Page 8]^LInternet-Draft draft-herlein-avt-rtp-speex-00.txt March 3, 2004 Care must be taken when setting the value of ptime so that the RTP packet size does not exceed the path MTU. 6. ITU H.323/H.245 Use of Speex Application is underway to make Speex a standard ITU codec. However, until that is finalized, Speex MAY be used in H.323 [6] by using a non-standard codec block definition in the H.245 [7] codec capability negotiations. 6.1 NonStandardMessage format For Speex use in H.245 [7] based systems, the fields in the NonStandardMessage should be: t35CountryCode = Hex: B5 t35Extension = Hex: 00 manufacturerCode = Hex: 0026 [Length of the Binary Sequence (8 bit number)] [Binary Sequence consisting of an ASCII string, no NULL terminator] The binary sequence is an ascii string merely for ease of use. The string is not null terminated. The format of this string is speex [optional variables] The optional variables are identical to those used for the SDP a=fmtp strings discussed in section 5 above. The string is built to be all on one line, each key-value pair separated by a semi-colon. The optional variables MAY be omitted, which causes the default values to be assumed. They are: ebw=narrow;mode=3;vbr=off;cng=off;ptime=20;sr=8000;penh=no; The fifth byte of the block is the length of the binary sequence. NOTE: this method can result in the advertising of a large number of Speex 'codecs' based on the number of variables possible. For most VoIP applications, use of the default binary sequence of 'speex' is RECOMMENDED to be used in addition to all other options. This maximizes the chances that two H.323 based applications that support Speex can find a mutual codec. 6.2 RTP Payload Types Dynamic payload type codes MUST be negotiated 'out-of-band' for the assignment of a dynamic payload type from the range of 96-127. H.323 applications MUST use the H.245 H2250LogicalChannelParameters encoding to accomplish this. Herlein, Valin, et. al. Expires September 3, 2004 [Page 9]^LInternet-Draft draft-herlein-avt-rtp-speex-00.txt March 3, 20047. Security Considerations RTP packets using the payload format defined in this specification are subject to the security considerations discussed in the RTP specification [2], and any appropriate RTP profile. This implies that confidentiality of the media streams is achieved by encryption. Because the data compression used with this payload format is applied end-to-end, encryption may be performed after compression so there is no conflict between the two operations. A potential denial-of-service threat exists for data encodings using compression techniques that have non-uniform receiver-end computational load. The attacker can inject pathological datagrams into the stream which are complex to decode and cause the receiver to be overloaded. However, this encoding does not exhibit any significant non-uniformity. As with any IP-based protocol, in some circumstances a receiver may be overloaded simply by the receipt of too many packets, either desired or undesired. Network-layer authentication may be used to discard packets from undesired sources, but the processing cost of the authentication itself may be too high. 8. Normative References 1. Bradner, S., "The Internet Standards Process -- Revision 3", BCP 9, RFC 2026, October 1996. 2. Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson, "RTP: A Transport Protocol for real-time applications", RFC 1889, January 1996. 3. Freed, N. and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies", RFC 2045, November 1996. 4. Handley, M. and V. Jacobson, "SDP: Session Description Protocol", RFC 2327, April 1998. 5. Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. 6. ITU-T Recommendation H.323. "Packet-based Multimedia Communications Systems," 1998. 7. ITU-T Recommendation H.245 (1998), "Control of communications between Visual Telephone Systems and Terminal Equipment". 8. RTP: A transport protocol for real-time applications. Work in progress, draft-ietf-avt-rtp-new-12.txt.Herlein, Valin, et. al. Expires September 3, 2004 [Page 10]^LInternet-Draft draft-herlein-avt-rtp-speex-00.txt March 3, 2004 9. RTP Profile for Audio and Video Conferences with Minimal Control. Work in progress, draft-ietf-avt-profile-new-13.txt. 10. L. Walleij, "The application/ogg Media Type", RFC 3534, May 2003.8.1 Informative References 11. Speexenc/speexdec, reference command-line encoder/decoder, Speex website, http://www.speex.org/ 12. CELP, U.S. Federal Standard 1016. National Technical Information Service (NTIS) website, http://www.ntis.gov/ 9. Acknowledgments The authors would like to thank Equivalence Pty Ltd of Australia for their assistance in attempting to standardize the use of Speex in H.323 applications, and for implementing Speex in their open source OpenH323 stack. The authors would also like to thank Brian C. Wiles <brian@streamcomm.com> of StreamComm for his assistance in developing the proposed standard for Speex use in H.323 applications. The authors would also like to thank the following members of the Speex and AVT communities for their input: Ross Finlayson, Federico Montesino Pouzols, Henning Schulzrinne, Magnus Westerlund.10. Author's Address Greg Herlein <gherlein@herlein.com> 2034 Filbert Street San Francisco, CA United States 94123 Jean-Marc Valin <jean-marc.valin@hermes.usherb.ca> Department of Electrical and Computer Engineering University of Sherbrooke 2500 blvd Universit
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -