📄 newmat4.cpp
字号:
//$$ newmat4.cpp Constructors, ReSize, basic utilities
// Copyright (C) 1991,2,3,4,8,9: R B Davies
#include "include.h"
#include "newmat.h"
#include "newmatrc.h"
#ifdef use_namespace
namespace NEWMAT {
#endif
#ifdef DO_REPORT
#define REPORT { static ExeCounter ExeCount(__LINE__,4); ++ExeCount; }
#else
#define REPORT {}
#endif
#define DO_SEARCH // search for LHS of = in RHS
// ************************* general utilities *************************/
static int tristore(int n) // elements in triangular matrix
{ return (n*(n+1))/2; }
// **************************** constructors ***************************/
GeneralMatrix::GeneralMatrix()
{ store=0; storage=0; nrows=0; ncols=0; tag=-1; }
GeneralMatrix::GeneralMatrix(ArrayLengthSpecifier s)
{
REPORT
storage=s.Value(); tag=-1;
if (storage)
{
store = new Real [storage]; MatrixErrorNoSpace(store);
MONITOR_REAL_NEW("Make (GenMatrix)",storage,store)
}
else store = 0;
}
Matrix::Matrix(int m, int n) : GeneralMatrix(m*n)
{ REPORT nrows=m; ncols=n; }
SymmetricMatrix::SymmetricMatrix(ArrayLengthSpecifier n)
: GeneralMatrix(tristore(n.Value()))
{ REPORT nrows=n.Value(); ncols=n.Value(); }
UpperTriangularMatrix::UpperTriangularMatrix(ArrayLengthSpecifier n)
: GeneralMatrix(tristore(n.Value()))
{ REPORT nrows=n.Value(); ncols=n.Value(); }
LowerTriangularMatrix::LowerTriangularMatrix(ArrayLengthSpecifier n)
: GeneralMatrix(tristore(n.Value()))
{ REPORT nrows=n.Value(); ncols=n.Value(); }
DiagonalMatrix::DiagonalMatrix(ArrayLengthSpecifier m) : GeneralMatrix(m)
{ REPORT nrows=m.Value(); ncols=m.Value(); }
Matrix::Matrix(const BaseMatrix& M)
{
REPORT // CheckConversion(M);
// MatrixConversionCheck mcc;
GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::Rt);
GetMatrix(gmx);
}
RowVector::RowVector(const BaseMatrix& M) : Matrix(M)
{
if (nrows!=1)
{
Tracer tr("RowVector");
Throw(VectorException(*this));
}
}
ColumnVector::ColumnVector(const BaseMatrix& M) : Matrix(M)
{
if (ncols!=1)
{
Tracer tr("ColumnVector");
Throw(VectorException(*this));
}
}
SymmetricMatrix::SymmetricMatrix(const BaseMatrix& M)
{
REPORT // CheckConversion(M);
// MatrixConversionCheck mcc;
GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::Sm);
GetMatrix(gmx);
}
UpperTriangularMatrix::UpperTriangularMatrix(const BaseMatrix& M)
{
REPORT // CheckConversion(M);
// MatrixConversionCheck mcc;
GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::UT);
GetMatrix(gmx);
}
LowerTriangularMatrix::LowerTriangularMatrix(const BaseMatrix& M)
{
REPORT // CheckConversion(M);
// MatrixConversionCheck mcc;
GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::LT);
GetMatrix(gmx);
}
DiagonalMatrix::DiagonalMatrix(const BaseMatrix& M)
{
REPORT //CheckConversion(M);
// MatrixConversionCheck mcc;
GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::Dg);
GetMatrix(gmx);
}
IdentityMatrix::IdentityMatrix(const BaseMatrix& M)
{
REPORT //CheckConversion(M);
// MatrixConversionCheck mcc;
GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::Id);
GetMatrix(gmx);
}
GeneralMatrix::~GeneralMatrix()
{
if (store)
{
MONITOR_REAL_DELETE("Free (GenMatrix)",storage,store)
delete [] store;
}
}
CroutMatrix::CroutMatrix(const BaseMatrix& m)
{
REPORT
Tracer tr("CroutMatrix");
indx = 0; // in case of exception at next line
GeneralMatrix* gm = ((BaseMatrix&)m).Evaluate(MatrixType::Rt);
GetMatrix(gm);
if (nrows!=ncols) { CleanUp(); Throw(NotSquareException(*gm)); }
d=true; sing=false;
indx=new int [nrows]; MatrixErrorNoSpace(indx);
MONITOR_INT_NEW("Index (CroutMat)",nrows,indx)
ludcmp();
}
CroutMatrix::~CroutMatrix()
{
MONITOR_INT_DELETE("Index (CroutMat)",nrows,indx)
delete [] indx;
}
//ReturnMatrixX::ReturnMatrixX(GeneralMatrix& gmx)
//{
// REPORT
// gm = gmx.Image(); gm->ReleaseAndDelete();
//}
#ifndef TEMPS_DESTROYED_QUICKLY_R
GeneralMatrix::operator ReturnMatrixX() const
{
REPORT
GeneralMatrix* gm = Image(); gm->ReleaseAndDelete();
return ReturnMatrixX(gm);
}
#else
GeneralMatrix::operator ReturnMatrixX&() const
{
REPORT
GeneralMatrix* gm = Image(); gm->ReleaseAndDelete();
ReturnMatrixX* x = new ReturnMatrixX(gm);
MatrixErrorNoSpace(x); return *x;
}
#endif
#ifndef TEMPS_DESTROYED_QUICKLY_R
ReturnMatrixX GeneralMatrix::ForReturn() const
{
REPORT
GeneralMatrix* gm = Image(); gm->ReleaseAndDelete();
return ReturnMatrixX(gm);
}
#else
ReturnMatrixX& GeneralMatrix::ForReturn() const
{
REPORT
GeneralMatrix* gm = Image(); gm->ReleaseAndDelete();
ReturnMatrixX* x = new ReturnMatrixX(gm);
MatrixErrorNoSpace(x); return *x;
}
#endif
// ************************** ReSize matrices ***************************/
void GeneralMatrix::ReSize(int nr, int nc, int s)
{
REPORT
if (store)
{
MONITOR_REAL_DELETE("Free (ReDimensi)",storage,store)
delete [] store;
}
storage=s; nrows=nr; ncols=nc; tag=-1;
if (s)
{
store = new Real [storage]; MatrixErrorNoSpace(store);
MONITOR_REAL_NEW("Make (ReDimensi)",storage,store)
}
else store = 0;
}
void Matrix::ReSize(int nr, int nc)
{ REPORT GeneralMatrix::ReSize(nr,nc,nr*nc); }
void SymmetricMatrix::ReSize(int nr)
{ REPORT GeneralMatrix::ReSize(nr,nr,tristore(nr)); }
void UpperTriangularMatrix::ReSize(int nr)
{ REPORT GeneralMatrix::ReSize(nr,nr,tristore(nr)); }
void LowerTriangularMatrix::ReSize(int nr)
{ REPORT GeneralMatrix::ReSize(nr,nr,tristore(nr)); }
void DiagonalMatrix::ReSize(int nr)
{ REPORT GeneralMatrix::ReSize(nr,nr,nr); }
void RowVector::ReSize(int nc)
{ REPORT GeneralMatrix::ReSize(1,nc,nc); }
void ColumnVector::ReSize(int nr)
{ REPORT GeneralMatrix::ReSize(nr,1,nr); }
void RowVector::ReSize(int nr, int nc)
{
Tracer tr("RowVector::ReSize");
if (nr != 1) Throw(VectorException(*this));
REPORT GeneralMatrix::ReSize(1,nc,nc);
}
void ColumnVector::ReSize(int nr, int nc)
{
Tracer tr("ColumnVector::ReSize");
if (nc != 1) Throw(VectorException(*this));
REPORT GeneralMatrix::ReSize(nr,1,nr);
}
void IdentityMatrix::ReSize(int nr)
{ REPORT GeneralMatrix::ReSize(nr,nr,1); *store = 1; }
void Matrix::ReSize(const GeneralMatrix& A)
{ REPORT ReSize(A.Nrows(), A.Ncols()); }
void nricMatrix::ReSize(const GeneralMatrix& A)
{ REPORT ReSize(A.Nrows(), A.Ncols()); }
void ColumnVector::ReSize(const GeneralMatrix& A)
{ REPORT ReSize(A.Nrows(), A.Ncols()); }
void RowVector::ReSize(const GeneralMatrix& A)
{ REPORT ReSize(A.Nrows(), A.Ncols()); }
void SymmetricMatrix::ReSize(const GeneralMatrix& A)
{
REPORT
int n = A.Nrows();
if (n != A.Ncols())
{
Tracer tr("SymmetricMatrix::ReSize(GM)");
Throw(NotSquareException(*this));
}
ReSize(n);
}
void DiagonalMatrix::ReSize(const GeneralMatrix& A)
{
REPORT
int n = A.Nrows();
if (n != A.Ncols())
{
Tracer tr("DiagonalMatrix::ReSize(GM)");
Throw(NotSquareException(*this));
}
ReSize(n);
}
void UpperTriangularMatrix::ReSize(const GeneralMatrix& A)
{
REPORT
int n = A.Nrows();
if (n != A.Ncols())
{
Tracer tr("UpperTriangularMatrix::ReSize(GM)");
Throw(NotSquareException(*this));
}
ReSize(n);
}
void LowerTriangularMatrix::ReSize(const GeneralMatrix& A)
{
REPORT
int n = A.Nrows();
if (n != A.Ncols())
{
Tracer tr("LowerTriangularMatrix::ReSize(GM)");
Throw(NotSquareException(*this));
}
ReSize(n);
}
void IdentityMatrix::ReSize(const GeneralMatrix& A)
{
REPORT
int n = A.Nrows();
if (n != A.Ncols())
{
Tracer tr("IdentityMatrix::ReSize(GM)");
Throw(NotSquareException(*this));
}
ReSize(n);
}
void GeneralMatrix::ReSize(const GeneralMatrix&)
{
REPORT
Tracer tr("GeneralMatrix::ReSize(GM)");
Throw(NotDefinedException("ReSize", "this type of matrix"));
}
void GeneralMatrix::ReSizeForAdd(const GeneralMatrix& A, const GeneralMatrix&)
{ REPORT ReSize(A); }
void GeneralMatrix::ReSizeForSP(const GeneralMatrix& A, const GeneralMatrix&)
{ REPORT ReSize(A); }
// ************************* SameStorageType ******************************/
// SameStorageType checks A and B have same storage type including bandwidth
// It does not check same dimensions since we assume this is already done
bool GeneralMatrix::SameStorageType(const GeneralMatrix& A) const
{
REPORT
return Type() == A.Type();
}
// ******************* manipulate types, storage **************************/
int GeneralMatrix::search(const BaseMatrix* s) const
{ REPORT return (s==this) ? 1 : 0; }
int GenericMatrix::search(const BaseMatrix* s) const
{ REPORT return gm->search(s); }
int MultipliedMatrix::search(const BaseMatrix* s) const
{ REPORT return bm1->search(s) + bm2->search(s); }
int ShiftedMatrix::search(const BaseMatrix* s) const
{ REPORT return bm->search(s); }
int NegatedMatrix::search(const BaseMatrix* s) const
{ REPORT return bm->search(s); }
int ReturnMatrixX::search(const BaseMatrix* s) const
{ REPORT return (s==gm) ? 1 : 0; }
MatrixType Matrix::Type() const { return MatrixType::Rt; }
MatrixType SymmetricMatrix::Type() const { return MatrixType::Sm; }
MatrixType UpperTriangularMatrix::Type() const { return MatrixType::UT; }
MatrixType LowerTriangularMatrix::Type() const { return MatrixType::LT; }
MatrixType DiagonalMatrix::Type() const { return MatrixType::Dg; }
MatrixType RowVector::Type() const { return MatrixType::RV; }
MatrixType ColumnVector::Type() const { return MatrixType::CV; }
MatrixType CroutMatrix::Type() const { return MatrixType::Ct; }
MatrixType BandMatrix::Type() const { return MatrixType::BM; }
MatrixType UpperBandMatrix::Type() const { return MatrixType::UB; }
MatrixType LowerBandMatrix::Type() const { return MatrixType::LB; }
MatrixType SymmetricBandMatrix::Type() const { return MatrixType::SB; }
MatrixType IdentityMatrix::Type() const { return MatrixType::Id; }
MatrixBandWidth BaseMatrix::BandWidth() const { REPORT return -1; }
MatrixBandWidth DiagonalMatrix::BandWidth() const { REPORT return 0; }
MatrixBandWidth IdentityMatrix::BandWidth() const { REPORT return 0; }
MatrixBandWidth UpperTriangularMatrix::BandWidth() const
{ REPORT return MatrixBandWidth(0,-1); }
MatrixBandWidth LowerTriangularMatrix::BandWidth() const
{ REPORT return MatrixBandWidth(-1,0); }
MatrixBandWidth BandMatrix::BandWidth() const
{ REPORT return MatrixBandWidth(lower,upper); }
MatrixBandWidth GenericMatrix::BandWidth()const
{ REPORT return gm->BandWidth(); }
MatrixBandWidth AddedMatrix::BandWidth() const
{ REPORT return gm1->BandWidth() + gm2->BandWidth(); }
MatrixBandWidth SPMatrix::BandWidth() const
{ REPORT return gm1->BandWidth().minimum(gm2->BandWidth()); }
MatrixBandWidth KPMatrix::BandWidth() const
{
int lower, upper;
MatrixBandWidth bw1 = gm1->BandWidth(), bw2 = gm2->BandWidth();
if (bw1.Lower() < 0)
{
if (bw2.Lower() < 0) { REPORT lower = -1; }
else { REPORT lower = bw2.Lower() + (gm1->Nrows() - 1) * gm2->Nrows(); }
}
else
{
if (bw2.Lower() < 0)
{ REPORT lower = (1 + bw1.Lower()) * gm2->Nrows() - 1; }
else { REPORT lower = bw2.Lower() + bw1.Lower() * gm2->Nrows(); }
}
if (bw1.Upper() < 0)
{
if (bw2.Upper() < 0) { REPORT upper = -1; }
else { REPORT upper = bw2.Upper() + (gm1->Nrows() - 1) * gm2->Nrows(); }
}
else
{
if (bw2.Upper() < 0)
{ REPORT upper = (1 + bw1.Upper()) * gm2->Nrows() - 1; }
else { REPORT upper = bw2.Upper() + bw1.Upper() * gm2->Nrows(); }
}
return MatrixBandWidth(lower, upper);
}
MatrixBandWidth MultipliedMatrix::BandWidth() const
{ REPORT return gm1->BandWidth() * gm2->BandWidth(); }
MatrixBandWidth ConcatenatedMatrix::BandWidth() const { REPORT return -1; }
MatrixBandWidth SolvedMatrix::BandWidth() const
{
if (+gm1->Type() & MatrixType::Diagonal)
{ REPORT return gm2->BandWidth(); }
else { REPORT return -1; }
}
MatrixBandWidth ScaledMatrix::BandWidth() const
{ REPORT return gm->BandWidth(); }
MatrixBandWidth NegatedMatrix::BandWidth() const
{ REPORT return gm->BandWidth(); }
MatrixBandWidth TransposedMatrix::BandWidth() const
{ REPORT return gm->BandWidth().t(); }
MatrixBandWidth InvertedMatrix::BandWidth() const
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -