📄 tmte.cpp
字号:
//#define WANT_STREAM
#define WANT_MATH
#include "include.h"
#include "newmatap.h"
//#include "newmatio.h"
#include "tmt.h"
#ifdef use_namespace
using namespace NEWMAT;
#endif
// check D is sorted
void CheckIsSorted(const DiagonalMatrix& D, bool ascending = false)
{
DiagonalMatrix D1 = D;
if (ascending) SortAscending(D1); else SortDescending(D1);
D1 -= D; Print(D1);
}
void trymate()
{
Tracer et("Fourteenth test of Matrix package");
Tracer::PrintTrace();
{
Tracer et1("Stage 1");
Matrix A(8,5);
{
#ifndef ATandT
Real a[] = { 22, 10, 2, 3, 7,
14, 7, 10, 0, 8,
-1, 13, -1,-11, 3,
-3, -2, 13, -2, 4,
9, 8, 1, -2, 4,
9, 1, -7, 5, -1,
2, -6, 6, 5, 1,
4, 5, 0, -2, 2 };
#else
Real a[40];
a[ 0]=22; a[ 1]=10; a[ 2]= 2; a[ 3]= 3; a[ 4]= 7;
a[ 5]=14; a[ 6]= 7; a[ 7]=10; a[ 8]= 0; a[ 9]= 8;
a[10]=-1; a[11]=13; a[12]=-1; a[13]=-11;a[14]= 3;
a[15]=-3; a[16]=-2; a[17]=13; a[18]=-2; a[19]= 4;
a[20]= 9; a[21]= 8; a[22]= 1; a[23]=-2; a[24]= 4;
a[25]= 9; a[26]= 1; a[27]=-7; a[28]= 5; a[29]=-1;
a[30]= 2; a[31]=-6; a[32]= 6; a[33]= 5; a[34]= 1;
a[35]= 4; a[36]= 5; a[37]= 0; a[38]=-2; a[39]= 2;
#endif
A << a;
}
DiagonalMatrix D; Matrix U; Matrix V;
int anc = A.Ncols(); IdentityMatrix I(anc);
SymmetricMatrix S1; S1 << A.t() * A;
SymmetricMatrix S2; S2 << A * A.t();
Real zero = 0.0; SVD(A+zero,D,U,V); CheckIsSorted(D);
DiagonalMatrix D1; SVD(A,D1); CheckIsSorted(D1);
Print(DiagonalMatrix(D-D1));
Matrix W;
SVD(A, D1, W, W, true, false); D1 -= D; W -= U;
Clean(W,0.000000001); Print(W); Clean(D1,0.000000001); Print(D1);
Matrix WX;
SVD(A, D1, WX, W, false, true); D1 -= D; W -= V;
Clean(W,0.000000001); Print(W); Clean(D1,0.000000001); Print(D1);
Matrix SU = U.t() * U - I; Clean(SU,0.000000001); Print(SU);
Matrix SV = V.t() * V - I; Clean(SV,0.000000001); Print(SV);
Matrix B = U * D * V.t() - A; Clean(B,0.000000001); Print(B);
D1=0.0; SVD(A,D1,A); CheckIsSorted(D1); Print(Matrix(A-U));
D(1) -= sqrt(1248.0); D(2) -= 20; D(3) -= sqrt(384.0);
Clean(D,0.000000001); Print(D);
Jacobi(S1, D, V); CheckIsSorted(D, true);
V = S1 - V * D * V.t(); Clean(V,0.000000001); Print(V);
D = D.Reverse(); D(1)-=1248; D(2)-=400; D(3)-=384;
Clean(D,0.000000001); Print(D);
Jacobi(S1, D); CheckIsSorted(D, true);
D = D.Reverse(); D(1)-=1248; D(2)-=400; D(3)-=384;
Clean(D,0.000000001); Print(D);
SymmetricMatrix JW(5);
Jacobi(S1, D, JW); CheckIsSorted(D, true);
D = D.Reverse(); D(1)-=1248; D(2)-=400; D(3)-=384;
Clean(D,0.000000001); Print(D);
Jacobi(S2, D, V); CheckIsSorted(D, true);
V = S2 - V * D * V.t(); Clean(V,0.000000001); Print(V);
D = D.Reverse(); D(1)-=1248; D(2)-=400; D(3)-=384;
Clean(D,0.000000001); Print(D);
EigenValues(S1, D, V); CheckIsSorted(D, true);
V = S1 - V * D * V.t(); Clean(V,0.000000001); Print(V);
D(5)-=1248; D(4)-=400; D(3)-=384;
Clean(D,0.000000001); Print(D);
EigenValues(S2, D, V); CheckIsSorted(D, true);
V = S2 - V * D * V.t(); Clean(V,0.000000001); Print(V);
D(8)-=1248; D(7)-=400; D(6)-=384;
Clean(D,0.000000001); Print(D);
EigenValues(S1, D); CheckIsSorted(D, true);
D(5)-=1248; D(4)-=400; D(3)-=384;
Clean(D,0.000000001); Print(D);
SymmetricMatrix EW(S2);
EigenValues(S2, D, EW); CheckIsSorted(D, true);
D(8)-=1248; D(7)-=400; D(6)-=384;
Clean(D,0.000000001); Print(D);
}
{
Tracer et1("Stage 2");
Matrix A(20,21);
int i,j;
for (i=1; i<=20; i++) for (j=1; j<=21; j++)
{ if (i>j) A(i,j) = 0; else if (i==j) A(i,j) = 21-i; else A(i,j) = -1; }
A = A.t();
SymmetricMatrix S1; S1 << A.t() * A;
SymmetricMatrix S2; S2 << A * A.t();
DiagonalMatrix D; Matrix U; Matrix V;
#ifdef ATandT
int anc = A.Ncols(); DiagonalMatrix I(anc); // AT&T 2.1 bug
#else
DiagonalMatrix I(A.Ncols());
#endif
I=1.0;
SVD(A,D,U,V); CheckIsSorted(D);
Matrix SU = U.t() * U - I; Clean(SU,0.000000001); Print(SU);
Matrix SV = V.t() * V - I; Clean(SV,0.000000001); Print(SV);
Matrix B = U * D * V.t() - A; Clean(B,0.000000001); Print(B);
for (i=1; i<=20; i++) D(i) -= sqrt((22.0-i)*(21.0-i));
Clean(D,0.000000001); Print(D);
Jacobi(S1, D, V); CheckIsSorted(D, true);
V = S1 - V * D * V.t(); Clean(V,0.000000001); Print(V);
D = D.Reverse();
for (i=1; i<=20; i++) D(i) -= (22-i)*(21-i);
Clean(D,0.000000001); Print(D);
Jacobi(S2, D, V); CheckIsSorted(D, true);
V = S2 - V * D * V.t(); Clean(V,0.000000001); Print(V);
D = D.Reverse();
for (i=1; i<=20; i++) D(i) -= (22-i)*(21-i);
Clean(D,0.000000001); Print(D);
EigenValues(S1, D, V); CheckIsSorted(D, true);
V = S1 - V * D * V.t(); Clean(V,0.000000001); Print(V);
for (i=1; i<=20; i++) D(i) -= (i+1)*i;
Clean(D,0.000000001); Print(D);
EigenValues(S2, D, V); CheckIsSorted(D, true);
V = S2 - V * D * V.t(); Clean(V,0.000000001); Print(V);
for (i=2; i<=21; i++) D(i) -= (i-1)*i;
Clean(D,0.000000001); Print(D);
EigenValues(S1, D); CheckIsSorted(D, true);
for (i=1; i<=20; i++) D(i) -= (i+1)*i;
Clean(D,0.000000001); Print(D);
EigenValues(S2, D); CheckIsSorted(D, true);
for (i=2; i<=21; i++) D(i) -= (i-1)*i;
Clean(D,0.000000001); Print(D);
}
{
Tracer et1("Stage 3");
Matrix A(30,30);
int i,j;
for (i=1; i<=30; i++) for (j=1; j<=30; j++)
{ if (i>j) A(i,j) = 0; else if (i==j) A(i,j) = 1; else A(i,j) = -1; }
Real d1 = A.LogDeterminant().Value();
DiagonalMatrix D; Matrix U; Matrix V;
#ifdef ATandT
int anc = A.Ncols(); DiagonalMatrix I(anc); // AT&T 2.1 bug
#else
DiagonalMatrix I(A.Ncols());
#endif
I=1.0;
SVD(A,D,U,V); CheckIsSorted(D);
Matrix SU = U.t() * U - I; Clean(SU,0.000000001); Print(SU);
Matrix SV = V.t() * V - I; Clean(SV,0.000000001); Print(SV);
Real d2 = D.LogDeterminant().Value();
Matrix B = U * D * V.t() - A; Clean(B,0.000000001); Print(B);
Real d3 = D.LogDeterminant().Value();
ColumnVector Test(3);
Test(1) = d1 - 1; Test(2) = d2 - 1; Test(3) = d3 - 1;
Clean(Test,0.00000001); Print(Test); // only 8 decimal figures
A.ReSize(2,2);
Real a = 1.5; Real b = 2; Real c = 2 * (a*a + b*b);
A << a << b << a << b;
I.ReSize(2); I=1;
SVD(A,D,U,V); CheckIsSorted(D);
SU = U.t() * U - I; Clean(SU,0.000000001); Print(SU);
SV = V.t() * V - I; Clean(SV,0.000000001); Print(SV);
B = U * D * V.t() - A; Clean(B,0.000000001); Print(B);
D = D*D; SortDescending(D);
DiagonalMatrix D50(2); D50 << c << 0; D = D - D50;
Clean(D,0.000000001);
Print(D);
A << a << a << b << b;
SVD(A,D,U,V); CheckIsSorted(D);
SU = U.t() * U - I; Clean(SU,0.000000001); Print(SU);
SV = V.t() * V - I; Clean(SV,0.000000001); Print(SV);
B = U * D * V.t() - A; Clean(B,0.000000001); Print(B);
D = D*D; SortDescending(D);
D = D - D50;
Clean(D,0.000000001);
Print(D);
}
{
Tracer et1("Stage 4");
// test for bug found by Olof Runborg,
// Department of Numerical Analysis and Computer Science (NADA),
// KTH, Stockholm
Matrix A(22,20);
A = 0;
int a=1;
A(a+0,a+2) = 1; A(a+0,a+18) = -1;
A(a+1,a+9) = 1; A(a+1,a+12) = -1;
A(a+2,a+11) = 1; A(a+2,a+12) = -1;
A(a+3,a+10) = 1; A(a+3,a+19) = -1;
A(a+4,a+16) = 1; A(a+4,a+19) = -1;
A(a+5,a+17) = 1; A(a+5,a+18) = -1;
A(a+6,a+10) = 1; A(a+6,a+4) = -1;
A(a+7,a+3) = 1; A(a+7,a+2) = -1;
A(a+8,a+14) = 1; A(a+8,a+15) = -1;
A(a+9,a+13) = 1; A(a+9,a+16) = -1;
A(a+10,a+8) = 1; A(a+10,a+9) = -1;
A(a+11,a+1) = 1; A(a+11,a+15) = -1;
A(a+12,a+16) = 1; A(a+12,a+4) = -1;
A(a+13,a+6) = 1; A(a+13,a+9) = -1;
A(a+14,a+5) = 1; A(a+14,a+4) = -1;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -