📄 newmat2.cpp
字号:
int l1 = f-skip; while (l1--) *elx++ = 0;
l1 = l-f; while (l1--) *elx++ *= *ely++;
lx -= l; while (lx--) *elx++ = 0;
}
void MatrixRowCol::Multiply(const MatrixRowCol& mrc1, const MatrixRowCol& mrc2)
// element by element multiply
{
int f = skip; int l = skip + storage;
int f1 = mrc1.skip; int l1 = f1 + mrc1.storage;
if (f1<f) f1=f; if (l1>l) l1=l;
int f2 = mrc2.skip; int l2 = f2 + mrc2.storage;
if (f2<f) f2=f; if (l2>l) l2=l;
Real* el = data + (f-skip); int i;
if (f1<f2) f1 = f2; if (l1>l2) l1 = l2;
if (l1<=f1) { REPORT i = l-f; while (i--) *el++ = 0.0; } // disjoint
else
{
REPORT
Real* el1 = mrc1.data+(f1-mrc1.skip);
Real* el2 = mrc2.data+(f1-mrc2.skip);
i = f1-f ; while (i--) *el++ = 0.0;
i = l1-f1; while (i--) *el++ = *el1++ * *el2++;
i = l-l1; while (i--) *el++ = 0.0;
}
}
void MatrixRowCol::KP(const MatrixRowCol& mrc1, const MatrixRowCol& mrc2)
// row for Kronecker product
{
int f = skip; int s = storage; Real* el = data; int i;
i = mrc1.skip * mrc2.length;
if (i > f)
{
i -= f; f = 0; if (i > s) { i = s; s = 0; } else s -= i;
while (i--) *el++ = 0.0;
if (s == 0) return;
}
else f -= i;
i = mrc1.storage; Real* el1 = mrc1.data;
int mrc2_skip = mrc2.skip; int mrc2_storage = mrc2.storage;
int mrc2_length = mrc2.length;
int mrc2_remain = mrc2_length - mrc2_skip - mrc2_storage;
while (i--)
{
int j; Real* el2 = mrc2.data; Real vel1 = *el1;
if (f == 0 && mrc2_length <= s)
{
j = mrc2_skip; s -= j; while (j--) *el++ = 0.0;
j = mrc2_storage; s -= j; while (j--) *el++ = vel1 * *el2++;
j = mrc2_remain; s -= j; while (j--) *el++ = 0.0;
}
else if (f >= mrc2_length) f -= mrc2_length;
else
{
j = mrc2_skip;
if (j > f)
{
j -= f; f = 0; if (j > s) { j = s; s = 0; } else s -= j;
while (j--) *el++ = 0.0;
}
else f -= j;
j = mrc2_storage;
if (j > f)
{
j -= f; el2 += f; f = 0; if (j > s) { j = s; s = 0; } else s -= j;
while (j--) *el++ = vel1 * *el2++;
}
else f -= j;
j = mrc2_remain;
if (j > f)
{
j -= f; f = 0; if (j > s) { j = s; s = 0; } else s -= j;
while (j--) *el++ = 0.0;
}
else f -= j;
}
if (s == 0) return;
++el1;
}
i = (mrc1.length - mrc1.skip - mrc1.storage) * mrc2.length;
if (i > f)
{
i -= f; if (i > s) i = s;
while (i--) *el++ = 0.0;
}
}
void MatrixRowCol::Copy(const MatrixRowCol& mrc1)
{
// THIS = mrc1
REPORT
if (!storage) return;
int f = mrc1.skip; int l = f + mrc1.storage; int lx = skip + storage;
if (f < skip) { f = skip; if (l < f) l = f; }
if (l > lx) { l = lx; if (f > lx) f = lx; }
Real* elx = data; Real* ely = 0;
if (l-f) ely = mrc1.data+(f-mrc1.skip);
int l1 = f-skip; while (l1--) *elx++ = 0.0;
l1 = l-f; while (l1--) *elx++ = *ely++;
lx -= l; while (lx--) *elx++ = 0.0;
}
void MatrixRowCol::CopyCheck(const MatrixRowCol& mrc1)
// Throw an exception if this would lead to a loss of data
{
REPORT
if (!storage) return;
int f = mrc1.skip; int l = f + mrc1.storage; int lx = skip + storage;
if (f < skip || l > lx) Throw(ProgramException("Illegal Conversion"));
Real* elx = data; Real* ely = mrc1.data+(f-mrc1.skip);
int l1 = f-skip; while (l1--) *elx++ = 0.0;
l1 = l-f; while (l1--) *elx++ = *ely++;
lx -= l; while (lx--) *elx++ = 0.0;
}
void MatrixRowCol::Check(const MatrixRowCol& mrc1)
// Throw an exception if +=, -=, copy etc would lead to a loss of data
{
REPORT
int f = mrc1.skip; int l = f + mrc1.storage; int lx = skip + storage;
if (f < skip || l > lx) Throw(ProgramException("Illegal Conversion"));
}
void MatrixRowCol::Check()
// Throw an exception if +=, -= of constant would lead to a loss of data
// that is: check full row is present
// may not be appropriate for symmetric matrices
{
REPORT
if (skip!=0 || storage!=length)
Throw(ProgramException("Illegal Conversion"));
}
void MatrixRowCol::Negate(const MatrixRowCol& mrc1)
{
// THIS = -mrc1
REPORT
if (!storage) return;
int f = mrc1.skip; int l = f + mrc1.storage; int lx = skip + storage;
if (f < skip) { f = skip; if (l < f) l = f; }
if (l > lx) { l = lx; if (f > lx) f = lx; }
Real* elx = data; Real* ely = mrc1.data+(f-mrc1.skip);
int l1 = f-skip; while (l1--) *elx++ = 0.0;
l1 = l-f; while (l1--) *elx++ = - *ely++;
lx -= l; while (lx--) *elx++ = 0.0;
}
void MatrixRowCol::Multiply(const MatrixRowCol& mrc1, Real s)
{
// THIS = mrc1 * s
REPORT
if (!storage) return;
int f = mrc1.skip; int l = f + mrc1.storage; int lx = skip + storage;
if (f < skip) { f = skip; if (l < f) l = f; }
if (l > lx) { l = lx; if (f > lx) f = lx; }
Real* elx = data; Real* ely = mrc1.data+(f-mrc1.skip);
int l1 = f-skip; while (l1--) *elx++ = 0.0;
l1 = l-f; while (l1--) *elx++ = *ely++ * s;
lx -= l; while (lx--) *elx++ = 0.0;
}
void DiagonalMatrix::Solver(MatrixColX& mrc, const MatrixColX& mrc1)
{
// mrc = mrc / mrc1 (elementwise)
REPORT
int f = mrc1.skip; int f0 = mrc.skip;
int l = f + mrc1.storage; int lx = f0 + mrc.storage;
if (f < f0) { f = f0; if (l < f) l = f; }
if (l > lx) { l = lx; if (f > lx) f = lx; }
Real* elx = mrc.data; Real* eld = store+f;
int l1 = f-f0; while (l1--) *elx++ = 0.0;
l1 = l-f; while (l1--) *elx++ /= *eld++;
lx -= l; while (lx--) *elx++ = 0.0;
// Solver makes sure input and output point to same memory
}
void IdentityMatrix::Solver(MatrixColX& mrc, const MatrixColX& mrc1)
{
// mrc = mrc / mrc1 (elementwise)
REPORT
int f = mrc1.skip; int f0 = mrc.skip;
int l = f + mrc1.storage; int lx = f0 + mrc.storage;
if (f < f0) { f = f0; if (l < f) l = f; }
if (l > lx) { l = lx; if (f > lx) f = lx; }
Real* elx = mrc.data; Real eldv = *store;
int l1 = f-f0; while (l1--) *elx++ = 0.0;
l1 = l-f; while (l1--) *elx++ /= eldv;
lx -= l; while (lx--) *elx++ = 0.0;
// Solver makes sure input and output point to same memory
}
void MatrixRowCol::Copy(const Real*& r)
{
// THIS = *r
REPORT
Real* elx = data; const Real* ely = r+skip; r += length;
int l = storage; while (l--) *elx++ = *ely++;
}
void MatrixRowCol::Copy(Real r)
{
// THIS = r
REPORT Real* elx = data; int l = storage; while (l--) *elx++ = r;
}
void MatrixRowCol::Zero()
{
// THIS = 0
REPORT Real* elx = data; int l = storage; while (l--) *elx++ = 0;
}
void MatrixRowCol::Multiply(Real r)
{
// THIS *= r
REPORT Real* elx = data; int l = storage; while (l--) *elx++ *= r;
}
void MatrixRowCol::Add(Real r)
{
// THIS += r
REPORT
Real* elx = data; int l = storage; while (l--) *elx++ += r;
}
Real MatrixRowCol::SumAbsoluteValue()
{
REPORT
Real sum = 0.0; Real* elx = data; int l = storage;
while (l--) sum += fabs(*elx++);
return sum;
}
// max absolute value of r and elements of row/col
// we use <= or >= in all of these so we are sure of getting
// r reset at least once.
Real MatrixRowCol::MaximumAbsoluteValue1(Real r, int& i)
{
REPORT
Real* elx = data; int l = storage; int li = -1;
while (l--) { Real f = fabs(*elx++); if (r <= f) { r = f; li = l; } }
i = (li >= 0) ? storage - li + skip : 0;
return r;
}
// min absolute value of r and elements of row/col
Real MatrixRowCol::MinimumAbsoluteValue1(Real r, int& i)
{
REPORT
Real* elx = data; int l = storage; int li = -1;
while (l--) { Real f = fabs(*elx++); if (r >= f) { r = f; li = l; } }
i = (li >= 0) ? storage - li + skip : 0;
return r;
}
// max value of r and elements of row/col
Real MatrixRowCol::Maximum1(Real r, int& i)
{
REPORT
Real* elx = data; int l = storage; int li = -1;
while (l--) { Real f = *elx++; if (r <= f) { r = f; li = l; } }
i = (li >= 0) ? storage - li + skip : 0;
return r;
}
// min value of r and elements of row/col
Real MatrixRowCol::Minimum1(Real r, int& i)
{
REPORT
Real* elx = data; int l = storage; int li = -1;
while (l--) { Real f = *elx++; if (r >= f) { r = f; li = l; } }
i = (li >= 0) ? storage - li + skip : 0;
return r;
}
Real MatrixRowCol::Sum()
{
REPORT
Real sum = 0.0; Real* elx = data; int l = storage;
while (l--) sum += *elx++;
return sum;
}
void MatrixRowCol::SubRowCol(MatrixRowCol& mrc, int skip1, int l1) const
{
mrc.length = l1; int d = skip - skip1;
if (d<0) { mrc.skip = 0; mrc.data = data - d; }
else { mrc.skip = d; mrc.data = data; }
d = skip + storage - skip1;
d = ((l1 < d) ? l1 : d) - mrc.skip; mrc.storage = (d < 0) ? 0 : d;
mrc.cw = 0;
}
#ifdef use_namespace
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -