📄 sample.save
字号:
Data Points:(-0.297462, 0.176102)(0.565538, -0.361496)(0.909313, -0.182785)(0.920712, 0.478408)(0.167682, 0.0499836)(0.305223, -0.0805835)(0.114973, 0.882453)(0.742916, 0.16376)(0.0724605, -0.826775)(0.69096, -0.559284)(0.188485, -0.643934)(0.749427, -0.942415)(-0.970662, -0.223466)(0.91611, 0.879597)(0.927417, -0.382593)(-0.711327, 0.278713)(-0.519172, 0.986146)(0.135338, 0.924588)(-0.0837537, 0.61687)(0.0520465, 0.896306)Executing Clustering Algorithm: Lloyd'sNumber of stages: 100Average distortion: 0.140324(Final Center Points: 0 [ -0.659817 0.0771163 ] dist = 0.371368 1 [ 0.508501 -0.436654 ] dist = 1.78337 2 [ 0.859913 0.507255 ] dist = 0.278002 3 [ -0.0601136 0.861273 ] dist = 0.373741)(Cluster assignments: Point Center Squared Dist ----- ------ ------------ 0 0 0.141099 1 1 0.00890192 2 1 0.2251 3 2 0.00452871 4 1 0.352973 5 1 0.168108 6 3 0.0311039 7 2 0.131677 8 1 0.342326 9 1 0.0483297 10 1 0.145375 11 1 0.31384 12 0 0.186974 13 2 0.141797 14 1 0.178413 15 0 0.0432945 16 3 0.226328 17 3 0.0422102 18 3 0.0602915 19 3 0.0138072)Executing Clustering Algorithm: SwapNumber of stages: 100Average distortion: 0.189847(Final Center Points: 0 [ 0.0520465 0.896306 ] dist = 0.442777 1 [ -0.970662 -0.223466 ] dist = 0.932291 2 [ 0.742916 0.16376 ] dist = 1.41593 3 [ 0.69096 -0.559284 ] dist = 1.00593)(Cluster assignments: Point Center Squared Dist ----- ------ ------------ 0 1 0.612853 1 3 0.0548508 2 2 0.147781 3 2 0.130615 4 2 0.343839 5 2 0.251279 6 0 0.00415165 7 2 0 8 3 0.454093 9 3 0 10 3 0.259647 11 3 0.150208 12 1 0 13 2 0.542419 14 3 0.0871316 15 1 0.319438 16 0 0.334362 17 0 0.00773735 18 0 0.0965262 19 0 0)Executing Clustering Algorithm: EZ-HybridNumber of stages: 102Average distortion: 0.140324(Final Center Points: 0 [ 0.859913 0.507255 ] dist = 0.278002 1 [ -0.0601136 0.861273 ] dist = 0.373741 2 [ 0.508501 -0.436654 ] dist = 1.78337 3 [ -0.659817 0.0771163 ] dist = 0.371368)(Cluster assignments: Point Center Squared Dist ----- ------ ------------ 0 3 0.141099 1 2 0.00890192 2 2 0.2251 3 0 0.00452871 4 2 0.352973 5 2 0.168108 6 1 0.0311039 7 0 0.131677 8 2 0.342326 9 2 0.0483297 10 2 0.145375 11 2 0.31384 12 3 0.186974 13 0 0.141797 14 2 0.178413 15 3 0.0432945 16 1 0.226328 17 1 0.0422102 18 1 0.0602915 19 1 0.0138072)Executing Clustering Algorithm: HybridNumber of stages: 101Average distortion: 0.140324(Final Center Points: 0 [ -0.659817 0.0771163 ] dist = 0.371368 1 [ -0.0601136 0.861273 ] dist = 0.373741 2 [ 0.859913 0.507255 ] dist = 0.278002 3 [ 0.508501 -0.436654 ] dist = 1.78337)(Cluster assignments: Point Center Squared Dist ----- ------ ------------ 0 0 0.141099 1 3 0.00890192 2 3 0.2251 3 2 0.00452871 4 3 0.352973 5 3 0.168108 6 1 0.0311039 7 2 0.131677 8 3 0.342326 9 3 0.0483297 10 3 0.145375 11 3 0.31384 12 0 0.186974 13 2 0.141797 14 3 0.178413 15 0 0.0432945 16 1 0.226328 17 1 0.0422102 18 1 0.0602915 19 1 0.0138072)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -