⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 test4.save

📁 高效的k-means算法实现
💻 SAVE
📖 第 1 页 / 共 4 页
字号:
	<stage: 365 curr: 0.00563 best: 0.0004198 >	<stage: 366 curr: 0.0004268 best: 0.0004198 >	<stage: 367 curr: 0.002152 best: 0.0004198 >	<stage: 368 curr: 0.0004258 best: 0.0004198 >	<stage: 369 curr: 0.00652 best: 0.0004198 >	<stage: 370 curr: 0.005765 best: 0.0004198 >	<stage: 371 curr: 0.007703 best: 0.0004198 >	<stage: 372 curr: 0.0006622 best: 0.0004198 >	<stage: 373 curr: 0.00065 best: 0.0004198 >	<stage: 374 curr: 0.005631 best: 0.0004198 >	<stage: 375 curr: 0.0004176 best: 0.0004198 >	<stage: 376 curr: 0.008268 best: 0.0004176 >	<stage: 377 curr: 0.01878 best: 0.0004176 >	<stage: 378 curr: 0.002843 best: 0.0004176 >	<stage: 379 curr: 0.01565 best: 0.0004176 >	<stage: 380 curr: 0.006508 best: 0.0004176 >	<stage: 381 curr: 0.002738 best: 0.0004176 >	<stage: 382 curr: 0.01564 best: 0.0004176 >	<stage: 383 curr: 0.003072 best: 0.0004176 >	<stage: 384 curr: 0.0003043 best: 0.0004176 >	<stage: 385 curr: 0.007587 best: 0.0003043 >	<stage: 386 curr: 0.01553 best: 0.0003043 >	<stage: 387 curr: 0.006402 best: 0.0003043 >	<stage: 388 curr: 0.002622 best: 0.0003043 >	<stage: 389 curr: 0.01003 best: 0.0003043 >	<stage: 390 curr: 0.0004036 best: 0.0003043 >	<stage: 391 curr: 0.0003383 best: 0.0003043 >	<stage: 392 curr: 0.002735 best: 0.0003043 >	<stage: 393 curr: 0.0004124 best: 0.0003043 >	<stage: 394 curr: 0.0005505 best: 0.0003043 >	<stage: 395 curr: 0.0004274 best: 0.0003043 >	<stage: 396 curr: 0.005148 best: 0.0003043 >	<stage: 397 curr: 0.0004066 best: 0.0003043 >	<stage: 398 curr: 0.008159 best: 0.0003043 >	<stage: 399 curr: 0.01003 best: 0.0003043 >	<stage: 400 curr: 0.002958 best: 0.0003043 >	<stage: 401 curr: 0.005511 best: 0.0003043 >	<stage: 402 curr: 0.002625 best: 0.0003043 >	<stage: 403 curr: 0.01004 best: 0.0003043 >	<stage: 404 curr: 0.005777 best: 0.0003043 >	<stage: 405 curr: 0.002734 best: 0.0003043 >	<stage: 406 curr: 0.0004261 best: 0.0003043 >	<stage: 407 curr: 0.006402 best: 0.0003043 >	<stage: 408 curr: 0.00387 best: 0.0003043 >	<stage: 409 curr: 0.002035 best: 0.0003043 >	<stage: 410 curr: 0.00055 best: 0.0003043 >	<stage: 411 curr: 0.002212 best: 0.0003043 >	<stage: 412 curr: 0.005147 best: 0.0003043 >	<stage: 413 curr: 0.005512 best: 0.0003043 >	<stage: 414 curr: 0.0003891 best: 0.0003043 >	<stage: 415 curr: 0.008143 best: 0.0003043 >	<stage: 416 curr: 0.0002984 best: 0.0003043 >	<stage: 417 curr: 0.006394 best: 0.0002984 >	<stage: 418 curr: 0.005773 best: 0.0002984 >	<stage: 419 curr: 0.002727 best: 0.0002984 >	<stage: 420 curr: 0.005136 best: 0.0002984 >	<stage: 421 curr: 0.0004025 best: 0.0002984 >	<stage: 422 curr: 0.0003701 best: 0.0002984 >	<stage: 423 curr: 0.0002957 best: 0.0002984 >	<stage: 424 curr: 0.002716 best: 0.0002957 >	<stage: 425 curr: 0.002606 best: 0.0002957 >	<stage: 426 curr: 0.0005339 best: 0.0002957 >	<stage: 427 curr: 0.005774 best: 0.0002957 >	<stage: 428 curr: 0.006384 best: 0.0002957 >	<stage: 429 curr: 0.0004224 best: 0.0002957 >	<stage: 430 curr: 0.002724 best: 0.0002957 >	<stage: 431 curr: 0.01878 best: 0.0002957 >	<stage: 432 curr: 0.007804 best: 0.0002957 >	<stage: 433 curr: 0.002725 best: 0.0002957 >	<stage: 434 curr: 0.0005378 best: 0.0002957 >	<stage: 435 curr: 0.005496 best: 0.0002957 >	<stage: 436 curr: 0.006399 best: 0.0002957 >	<stage: 437 curr: 0.002023 best: 0.0002957 >	<stage: 438 curr: 0.01552 best: 0.0002957 >	<stage: 439 curr: 0.002949 best: 0.0002957 >	<stage: 440 curr: 0.0005409 best: 0.0002957 >	<stage: 441 curr: 0.01552 best: 0.0002957 >	<stage: 442 curr: 0.007858 best: 0.0002957 >	<stage: 443 curr: 0.0004268 best: 0.0002957 >	<stage: 444 curr: 0.0003924 best: 0.0002957 >	<stage: 445 curr: 0.01877 best: 0.0002957 >	<stage: 446 curr: 0.0002964 best: 0.0002957 >	<stage: 447 curr: 0.004814 best: 0.0002957 >	<stage: 448 curr: 0.008137 best: 0.0002957 >	<stage: 449 curr: 0.005508 best: 0.0002957 >	<stage: 450 curr: 0.004819 best: 0.0002957 >	<stage: 451 curr: 0.008151 best: 0.0002957 >	<stage: 452 curr: 0.0004449 best: 0.0002957 >	<stage: 453 curr: 0.004775 best: 0.0002957 >	<stage: 454 curr: 0.00203 best: 0.0002957 >	<stage: 455 curr: 0.006394 best: 0.0002957 >	<stage: 456 curr: 0.00221 best: 0.0002957 >	<stage: 457 curr: 0.009144 best: 0.0002957 >	<stage: 458 curr: 0.01878 best: 0.0002957 >	<stage: 459 curr: 0.0002979 best: 0.0002957 >	<stage: 460 curr: 0.006394 best: 0.0002957 >	<stage: 461 curr: 0.006392 best: 0.0002957 >	<stage: 462 curr: 0.0002961 best: 0.0002957 >	<stage: 463 curr: 0.00815 best: 0.0002957 >	<stage: 464 curr: 0.004813 best: 0.0002957 >	<stage: 465 curr: 0.0004218 best: 0.0002957 >	<stage: 466 curr: 0.00173 best: 0.0002957 >	<stage: 467 curr: 0.003865 best: 0.0002957 >	<stage: 468 curr: 0.00221 best: 0.0002957 >	<stage: 469 curr: 0.01528 best: 0.0002957 >	<stage: 470 curr: 0.0004257 best: 0.0002957 >	<stage: 471 curr: 0.0003979 best: 0.0002957 >	<stage: 472 curr: 0.003865 best: 0.0002957 >	<stage: 473 curr: 0.01553 best: 0.0002957 >	<stage: 474 curr: 0.000398 best: 0.0002957 >	<stage: 475 curr: 0.002206 best: 0.0002957 >	<stage: 476 curr: 0.002714 best: 0.0002957 >	<stage: 477 curr: 0.0003974 best: 0.0002957 >	<stage: 478 curr: 0.002952 best: 0.0002957 >	<stage: 479 curr: 0.0003247 best: 0.0002957 >	<stage: 480 curr: 0.0002958 best: 0.0002957 >	<stage: 481 curr: 0.002024 best: 0.0002957 >	<stage: 482 curr: 0.005507 best: 0.0002957 >	<stage: 483 curr: 0.006397 best: 0.0002957 >	<stage: 484 curr: 0.00295 best: 0.0002957 >	<stage: 485 curr: 0.002028 best: 0.0002957 >	<stage: 486 curr: 0.00272 best: 0.0002957 >	<stage: 487 curr: 0.002211 best: 0.0002957 >	<stage: 488 curr: 0.002948 best: 0.0002957 >	<stage: 489 curr: 0.01877 best: 0.0002957 >	<stage: 490 curr: 0.006392 best: 0.0002957 >	<stage: 491 curr: 0.004814 best: 0.0002957 >	<stage: 492 curr: 0.004812 best: 0.0002957 >	<stage: 493 curr: 0.003864 best: 0.0002957 >	<stage: 494 curr: 0.005773 best: 0.0002957 >	<stage: 495 curr: 0.01002 best: 0.0002957 >	<stage: 496 curr: 0.005507 best: 0.0002957 >	<stage: 497 curr: 0.01552 best: 0.0002957 >	<stage: 498 curr: 0.002029 best: 0.0002957 >	<stage: 499 curr: 0.004816 best: 0.0002957 >	<stage: 500 curr: 0.002616 best: 0.0002957 >[k-means completed:  n_stages      = 500  total_time    = 0.72 sec  init_time     = 0.03 sec  stage_time    = 0.00138 sec/stage_(excl_init) 0.00144 sec/stage_(incl_init)  average_distort = 0.0002957  (Final Center Points:       0	[   0.9195   0.4727 ] dist =  0.01022       1	[   0.5716  -0.3746 ] dist =  0.02445       2	[  0.06363   0.8993 ] dist =  0.01569       3	[    0.294 -0.08563 ] dist =  0.02304       4	[  0.07251  -0.8238 ] dist = 0.009392       5	[   0.9164   0.8788 ] dist =  0.01072       6	[  -0.2958   0.1774 ] dist = 0.008057       7	[   -0.718   0.2776 ] dist =  0.01214       8	[   0.1735  0.04778 ] dist =  0.01159       9	[   0.9142  -0.1995 ] dist =  0.02455      10	[   0.1231   0.8797 ] dist =   0.0155      11	[  -0.5105   0.9874 ] dist =  0.01839      12	[   0.1824  -0.6496 ] dist =  0.01662      13	[   0.9169   -0.382 ] dist =  0.01229      14	[    0.762  -0.9376 ] dist =  0.01489      15	[   0.1421    0.931 ] dist =  0.01578      16	[  -0.0855   0.6241 ] dist =  0.01279      17	[   0.6821  -0.5637 ] dist =  0.01629      18	[   0.7491   0.1654 ] dist = 0.007499      19	[   -0.986  -0.2227 ] dist =  0.01578  )]  (Cluster assignments:    Point  Center  Squared Dist    -----  ------  ------------       0       2    0.0006121       1       4    7.407e-05       2       0    4.087e-05       3       9    0.0006335       4       0    0.0001292       5      12    0.0003457       6      16    0.0001942       7       0            0       8       0    0.0003069       9      19    0.0001373      10      18    0.0004954      11       7    0.0001868      12       9    0.0004907      13       4     0.000339      14      11    0.0004969      15      15    4.448e-06      16      19    0.0002035      17      12    0.0006329      18       1    0.0001354      19      15    5.858e-05      20      11    3.248e-05      21       7    0.0002211      22       6    7.995e-05      23      17    0.0002762      24      14    0.0003826      25       0     0.001812      26       8    0.0001474      27       3    0.0004415      28      10    8.461e-05      29       8    4.405e-05      30      16    0.0001686      31       1    0.0001377      32       0    0.0001678      33       2     1.74e-05      34      11    7.187e-05      35       4     0.000419      36      16    5.401e-05      37       6    0.0001243      38       6    0.0001658      39      14    0.0005687      40       5    0.0002633      41      11    0.0004958      42      15    0.0002702      43      19    2.444e-05      44       6    4.271e-05      45       9    0.0002101      46      12      0.00048      47       5    0.0001563      48      18    0.0001374      49      18    0.0001289      50       6    0.0001321      51       9    0.0002901      52      15    0.0005731      53       7     0.000338      54       1    0.0001717      55      11    9.045e-05      56      14    0.0007814      57       0    0.0004327      58      15    0.0002829      59       8    5.419e-05      60      18    0.0003862      61       8    9.475e-06      62      14            0      63       0    8.881e-05      64      17    0.0001669      65      15    8.484e-06      66       9    0.0004613      67       1    0.0001294      68      17     0.001048      69      15    0.0001947      70      19    0.0004472      71      13    0.0008955      72      11      0.00108      73      10    0.0006377      74       9     0.001036      75      11    3.061e-05      76      15    0.0004183      77       5    0.0004544      78       3    0.0003163      79      11    0.0005367      80       7     0.000338      81      15     8.23e-06      82       8    0.0001641      83       7    0.0002911      84      16    0.0005692      85       5    0.0001678      86      16    0.0005341      87       4    0.0001133      88       0    0.0001821      89      11    0.0001165      90      16    0.0001447      91      19    0.0002091      92      17    0.0002032      93      13    0.0005486      94       7    0.0007908      95      13     0.000348      96       9    0.0006814      97      15    0.0005333      98       4    4.964e-05      99       3    0.0001352     100      14    0.0005239     101      16    0.0001765     102       5    0.0004059     103      15     0.000104     104      10    0.0003267     105      19    5.583e-05     106       5    0.0004393     107      15    0.0008124     108       3     0.001189     109       1    8.208e-06     110      11    0.0005144     111      11      2.5e-05     112       8    0.0001004     113      15    0.0004236     114      13     0.000148     115       3    0.0001885     116       4    0.0003939     117       5    1.746e-05     118      15    0.0003663     119      10    0.0004211     120       7    0.0004315     121      11     4.54e-05     122      11    5.785e-05     123       4    0.0002611     124      19    6.856e-05     125       1    0.0002233     126       5    0.0001864     127      12     0.000408     128       7    0.0003851     129       1    9.357e-05     130      13    0.0002239     131      11    0.0001218     132       5    0.0001644     133       1    0.0001941     134       8     0.000384     135       6    0.0003547     136       5    0.0002225     137      19    0.0004738     138      15    0.0002562     139       8    3.051e-05     140       6    0.0001635     141       1     0.000376     142      12    0.0004574     143      15    0.0001024     144       2    0.0002566     145       6    5.371e-05     146      11    0.0002317     147       1    4.127e-06     148      10    0.0006012     149      12     0.000112     150       9     0.000793     151       7    0.0003581     152       2    0.0005254     153       2     0.000363     154       9    0.0001895     155       1    0.0009555     156       8    0.0002585     157      11    0.0002546     158      15    0.0003528     159       4    0.0002443     160      10     0.000213     161       9    0.0009212     162       3    0.0006948     163      11    0.0004989     164      10     0.000573     165       8    0.0004222     166       5    5.752e-05     167      11    5.656e-05     168       8    0.0003034     169      13    2.794e-05     170      11    0.0002038     171      17    0.0003588     172      11    0.0001571     173      15    0.0002597     174       9    0.0006413     175      14    9.902e-05     176      15    0.0001227     177      17      1.7e-07     178       1    0.0002722     179       6    0.0001281     180       2    0.0001463     181       1    0.0004308     182      15    6.023e-05     183      11    0.0003318     184      19            0     185       9    2.358e-05     186       1    5.834e-05     187       6    2.457e-05     188       4    8.239e-05     189      17     0.001398     190      16    0.0001205     191      10    4.032e-05     192       8    6.392e-05     193       6     2.26e-05     194       0    4.712e-05     195       1    7.735e-05     196       9     0.000392     197       6    1.879e-05     198       4    6.361e-05     199       4    0.0001971     200      11    0.0003987     201       8    1.243e-06     202       3    7.368e-05     203       8    6.119e-05     204       5    0.0001052     205       8    0.0001294     206       5    0.0003246     207      16    3.378e-05     208      15     3.86e-05     209      12    7.595e-05     210      15    0.0001614     211      15    5.548e-05     212      19     0.001387     213      17    0.0008504     214       1    0.0001957     215      15    0.0003943     216      19    0.0005631     217       6    5.081e-06     218       3     0.002069     219      15    0.0008358     220       3    9.916e-05     221       2    2.045e-05

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -