⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 test0.save

📁 高效的k-means算法实现
💻 SAVE
字号:
------------------------------------------------------------kmltest: KMlocal (k-means clustering by local search)    Version: 1.7 (Use at your own risk)    Copyright: David M. Mount.    Latest Revision: August 10, 2005.------------------------------------------------------------stats = tree[Read Data Points:  data_size  = 20  file_name  = test1-dat.txt  dim        = 2]Contents of the kc-tree: [    ....Leaf n=1 <13> sm=[     0.91     0.87 ] ss=1.585    ...Split cd=0 cv=0.4475 nd=4 sm=[     1.19     3.56 ] ss=4.027    ......Leaf n=1 <17> sm=[     0.13     0.92 ] ss=0.8633    .....Split cd=0 cv=  0.13 nd=2 sm=[     0.18     1.81 ] ss=1.658    ......Leaf n=1 <19> sm=[     0.05     0.89 ] ss=0.7946    ....Split cd=1 cv=  0.88 nd=3 sm=[     0.28     2.69 ] ss=2.442    .....Leaf n=1 <6> sm=[      0.1     0.88 ] ss=0.7844    ..Split cd=1 cv=   0.5 nd=7 sm=[     3.01     4.23 ] ss=5.695    .....Leaf n=1 <3> sm=[     0.92     0.47 ] ss=1.067    ....Split cd=1 cv=  0.26 nd=2 sm=[     1.66     0.63 ] ss=1.64    .....Leaf n=1 <7> sm=[     0.74     0.16 ] ss=0.5732    ...Split cd=0 cv=0.4475 nd=3 sm=[     1.82     0.67 ] ss=1.668    ....Leaf n=1 <4> sm=[     0.16     0.04 ] ss=0.0272    .Split cd=0 cv=-0.025 nd=11 sm=[     1.42     6.26 ] ss=7.984    ....Leaf n=1 <18> sm=[    -0.08     0.61 ] ss=0.3785    ...Split cd=0 cv=-0.4975 nd=2 sm=[    -0.59     1.59 ] ss=1.599    ....Leaf n=1 <16> sm=[    -0.51     0.98 ] ss=1.22    ..Split cd=1 cv=   0.5 nd=4 sm=[    -1.59     2.03 ] ss=2.289    ....Leaf n=1 <0> sm=[    -0.29     0.17 ] ss=0.113    ...Split cd=0 cv=-0.4975 nd=2 sm=[       -1     0.44 ] ss=0.69    ....Leaf n=1 <15> sm=[    -0.71     0.27 ] ss=0.577    Split cd=1 cv=  0.02 nd=20 sm=[     4.72     2.09 ] ss=14.56    .....Leaf n=1 <2> sm=[      0.9    -0.18 ] ss=0.8424    ....Split cd=1 cv= -0.22 nd=3 sm=[     2.38    -0.92 ] ss=2.276    ......Leaf n=1 <14> sm=[     0.92    -0.38 ] ss=0.9908    .....Split cd=0 cv=0.6838 nd=2 sm=[     1.48    -0.74 ] ss=1.434    ......Leaf n=1 <1> sm=[     0.56    -0.36 ] ss=0.4432    ...Split cd=0 cv=0.4475 nd=4 sm=[     2.68       -1 ] ss=2.373    ....Leaf n=1 <5> sm=[      0.3    -0.08 ] ss=0.0964    ..Split cd=1 cv= -0.46 nd=8 sm=[     4.27    -3.95 ] ss=5.586    .....Leaf n=1 <9> sm=[      0.6    -0.55 ] ss=0.6625    ....Split cd=1 cv=  -0.7 nd=2 sm=[     1.34    -1.49 ] ss=2.094    .....Leaf n=1 <11> sm=[     0.74    -0.94 ] ss=1.431    ...Split cd=0 cv=0.4475 nd=4 sm=[     1.59    -2.95 ] ss=3.213    .....Leaf n=1 <10> sm=[     0.18    -0.64 ] ss=0.442    ....Split cd=1 cv=  -0.7 nd=2 sm=[     0.25    -1.46 ] ss=1.119    .....Leaf n=1 <8> sm=[     0.07    -0.82 ] ss=0.6773    .Split cd=0 cv=-0.025 nd=9 sm=[      3.3    -4.17 ] ss=6.575    ..Leaf n=1 <12> sm=[    -0.97    -0.22 ] ss=0.9893]       0	[        0        0 ] dist = 7.891e-309       1	[        0        0 ] dist = 6.963e-77       2	[        0        0 ] dist = 6.555e-260       3	[        0        0 ] dist = 6.014e-154[Run_k-means:  k-means_alg      = lloyd  data_size        = 20  kcenters         = 4  dim              = 2  max_tot_stage    = 20  max_run_stage    = 3  min_accum_rdl    = 0.2]       0	[     0.18    -0.64 ] dist = 7.891e-309       1	[     0.05     0.89 ] dist = 6.963e-77       2	[    -0.71     0.27 ] dist = 6.555e-260       3	[     0.56    -0.36 ] dist = 6.014e-154	<stage: 0 curr: 0.1989 best: 0.1989 accumRDL: 0% >       0	[    0.125    -0.73 ] dist =   0.0445       1	[      0.1   0.8583 ] dist =    1.167       2	[  -0.6567  0.07333 ] dist =   0.4941       3	[   0.6489  -0.2022 ] dist =    2.272	<stage: 1 curr: 0.1692 best: 0.1692 accumRDL: 14.92% >       0	[     0.33     -0.8 ] dist =   0.4446       1	[      0.1   0.8583 ] dist =    1.146       2	[  -0.6567  0.07333 ] dist =   0.3695       3	[   0.6375    -0.11 ] dist =    1.424	<stage: 2 curr: 0.1557 best: 0.1557 accumRDL: 21.69% >    <Generating new random centers>       0	[   0.3975  -0.7375 ] dist =   0.4392       1	[      0.1   0.8583 ] dist =    1.146       2	[  -0.6567  0.07333 ] dist =   0.3695       3	[   0.6429 -0.04714 ] dist =     1.16	<stage: 3 curr: 0.1526 best: 0.1526 accumRDL: 1.981% >       0	[   0.3975  -0.7375 ] dist =   0.4054       1	[      0.1   0.8583 ] dist =    1.146       2	[  -0.6567  0.07333 ] dist =   0.3695       3	[   0.6429 -0.04714 ] dist =    1.132	<stage: 4 curr: 0.1526 best: 0.1526 accumRDL: 1.981% >       0	[   0.3975  -0.7375 ] dist =   0.4054       1	[      0.1   0.8583 ] dist =    1.146       2	[  -0.6567  0.07333 ] dist =   0.3695       3	[   0.6429 -0.04714 ] dist =    1.132	<stage: 5 curr: 0.1526 best: 0.1526 accumRDL: 1.981% >    <Generating new random centers>       0	[     0.91     0.87 ] dist =   0.4054       1	[    -0.08     0.61 ] dist =    1.146       2	[      0.1     0.88 ] dist =   0.3695       3	[    -0.97    -0.22 ] dist =    1.132	<stage: 6 curr: 0.7204 best: 0.1526 accumRDL: -362.6% >       0	[    0.878    0.188 ] dist =    3.358       1	[    0.185 -0.01625 ] dist =    7.796       2	[  0.09333   0.8967 ] dist =   0.0051       3	[  -0.3575  -0.3525 ] dist =    3.248	<stage: 7 curr: 0.2675 best: 0.1526 accumRDL: 62.86% >    <Generating new random centers>       0	[    0.878    0.188 ] dist =    1.028       1	[    0.345  -0.2867 ] dist =    2.159       2	[   -0.062    0.856 ] dist =   0.4873       3	[  -0.3575  -0.3525 ] dist =    1.677	<stage: 8 curr: 0.2017 best: 0.1526 accumRDL: 24.6% >    <Generating new random centers>       0	[    0.878    0.188 ] dist =    1.028       1	[   0.3729  -0.4786 ] dist =    1.467       2	[   -0.062    0.856 ] dist =   0.3584       3	[  -0.6567  0.07333 ] dist =    1.182	<stage: 9 curr: 0.1472 best: 0.1472 accumRDL: 27.04% >    <Generating new random centers>       0	[   0.8675     0.33 ] dist =   0.7032       1	[   0.4413  -0.4662 ] dist =    1.513       2	[   -0.062    0.856 ] dist =   0.3584       3	[  -0.6567  0.07333 ] dist =   0.3695	<stage: 10 curr: 0.1412 best: 0.1412 accumRDL: 4.068% >       0	[   0.8675     0.33 ] dist =   0.6221       1	[   0.4413  -0.4662 ] dist =    1.474       2	[   -0.062    0.856 ] dist =   0.3584       3	[  -0.6567  0.07333 ] dist =   0.3695	<stage: 11 curr: 0.1412 best: 0.1412 accumRDL: 4.068% >       0	[   0.8675     0.33 ] dist =   0.6221       1	[   0.4413  -0.4662 ] dist =    1.474       2	[   -0.062    0.856 ] dist =   0.3584       3	[  -0.6567  0.07333 ] dist =   0.3695	<stage: 12 curr: 0.1412 best: 0.1412 accumRDL: 4.068% >    <Generating new random centers>       0	[      0.9    -0.18 ] dist =   0.6221       1	[     0.92    -0.38 ] dist =    1.474       2	[     0.16     0.04 ] dist =   0.3584       3	[    -0.51     0.98 ] dist =   0.3695	<stage: 13 curr: 0.3533 best: 0.1412 accumRDL: -140% >       0	[   0.8675     0.33 ] dist =    1.667       1	[    0.705  -0.5575 ] dist =   0.6073       2	[ -0.09167  -0.2583 ] dist =    2.808       3	[    -0.17   0.7583 ] dist =    1.983	<stage: 14 curr: 0.1863 best: 0.1412 accumRDL: 47.25% >    <Generating new random centers>       0	[   0.8567      0.5 ] dist =   0.3609       1	[    0.744   -0.482 ] dist =   0.4769       2	[ -0.09167  -0.2583 ] dist =    1.894       3	[    -0.17   0.7583 ] dist =   0.9945	<stage: 15 curr: 0.1802 best: 0.1412 accumRDL: 3.305% >       0	[   0.8567      0.5 ] dist =   0.2739       1	[    0.744   -0.482 ] dist =   0.4408       2	[ -0.09167  -0.2583 ] dist =    1.894       3	[    -0.17   0.7583 ] dist =   0.9945	<stage: 16 curr: 0.1802 best: 0.1412 accumRDL: 3.305% >       0	[   0.8567      0.5 ] dist =   0.2739       1	[    0.744   -0.482 ] dist =   0.4408       2	[ -0.09167  -0.2583 ] dist =    1.894       3	[    -0.17   0.7583 ] dist =   0.9945	<stage: 17 curr: 0.1802 best: 0.1412 accumRDL: 3.305% >    <Generating new random centers>       0	[     0.91     0.87 ] dist =   0.2739       1	[      0.9    -0.18 ] dist =   0.4408       2	[    -0.97    -0.22 ] dist =    1.894       3	[     0.07    -0.82 ] dist =   0.9945	<stage: 18 curr: 0.391 best: 0.1412 accumRDL: -109.8% >       0	[   0.3383   0.7733 ] dist =    3.215       1	[   0.5971  -0.1929 ] dist =    1.523       2	[    -0.62      0.3 ] dist =    2.574       3	[     0.33     -0.8 ] dist =   0.5078	<stage: 19 curr: 0.1692 best: 0.1412 accumRDL: 56.73% >    <Generating new random centers>       0	[   0.3383   0.7733 ] dist =    1.198       1	[   0.5971  -0.1929 ] dist =   0.8793       2	[    -0.62      0.3 ] dist =    1.002       3	[     0.33     -0.8 ] dist =   0.3038	<stage: 20 curr: 0.1692 best: 0.1412 accumRDL: 0% >    <Generating new random centers>[k-means completed:  n_stages      = 20  total_time    = 0.02 sec  init_time     = 0 sec  stage_time    = 0.001 sec/stage_(excl_init) 0.001 sec/stage_(incl_init)  average_distort = 0.1412  (Final Center Points:       0	[   0.8675     0.33 ] dist =   0.6221       1	[   0.4413  -0.4662 ] dist =    1.474       2	[   -0.062    0.856 ] dist =   0.3584       3	[  -0.6567  0.07333 ] dist =   0.3695  )]  (Cluster assignments:    Point  Center  Squared Dist    -----  ------  ------------       0       3       0.1438       1       1      0.02539       2       0       0.2612       3       0      0.02236       4       1       0.3354       5       1       0.1691       6       2      0.02682       7       0      0.04516       8       1        0.263       9       1      0.03222      10       1      0.09844      11       1       0.3137      12       3       0.1842      13       0       0.2934      14       1       0.2366      15       3      0.04152      16       2       0.2161      17       2      0.04096      18       2      0.06084      19       2       0.0137  )  (Validating assignments.  Found 0 mismatches.)<END_OF_RUN>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -