📄 test0.save
字号:
------------------------------------------------------------kmltest: KMlocal (k-means clustering by local search) Version: 1.7 (Use at your own risk) Copyright: David M. Mount. Latest Revision: August 10, 2005.------------------------------------------------------------stats = tree[Read Data Points: data_size = 20 file_name = test1-dat.txt dim = 2]Contents of the kc-tree: [ ....Leaf n=1 <13> sm=[ 0.91 0.87 ] ss=1.585 ...Split cd=0 cv=0.4475 nd=4 sm=[ 1.19 3.56 ] ss=4.027 ......Leaf n=1 <17> sm=[ 0.13 0.92 ] ss=0.8633 .....Split cd=0 cv= 0.13 nd=2 sm=[ 0.18 1.81 ] ss=1.658 ......Leaf n=1 <19> sm=[ 0.05 0.89 ] ss=0.7946 ....Split cd=1 cv= 0.88 nd=3 sm=[ 0.28 2.69 ] ss=2.442 .....Leaf n=1 <6> sm=[ 0.1 0.88 ] ss=0.7844 ..Split cd=1 cv= 0.5 nd=7 sm=[ 3.01 4.23 ] ss=5.695 .....Leaf n=1 <3> sm=[ 0.92 0.47 ] ss=1.067 ....Split cd=1 cv= 0.26 nd=2 sm=[ 1.66 0.63 ] ss=1.64 .....Leaf n=1 <7> sm=[ 0.74 0.16 ] ss=0.5732 ...Split cd=0 cv=0.4475 nd=3 sm=[ 1.82 0.67 ] ss=1.668 ....Leaf n=1 <4> sm=[ 0.16 0.04 ] ss=0.0272 .Split cd=0 cv=-0.025 nd=11 sm=[ 1.42 6.26 ] ss=7.984 ....Leaf n=1 <18> sm=[ -0.08 0.61 ] ss=0.3785 ...Split cd=0 cv=-0.4975 nd=2 sm=[ -0.59 1.59 ] ss=1.599 ....Leaf n=1 <16> sm=[ -0.51 0.98 ] ss=1.22 ..Split cd=1 cv= 0.5 nd=4 sm=[ -1.59 2.03 ] ss=2.289 ....Leaf n=1 <0> sm=[ -0.29 0.17 ] ss=0.113 ...Split cd=0 cv=-0.4975 nd=2 sm=[ -1 0.44 ] ss=0.69 ....Leaf n=1 <15> sm=[ -0.71 0.27 ] ss=0.577 Split cd=1 cv= 0.02 nd=20 sm=[ 4.72 2.09 ] ss=14.56 .....Leaf n=1 <2> sm=[ 0.9 -0.18 ] ss=0.8424 ....Split cd=1 cv= -0.22 nd=3 sm=[ 2.38 -0.92 ] ss=2.276 ......Leaf n=1 <14> sm=[ 0.92 -0.38 ] ss=0.9908 .....Split cd=0 cv=0.6838 nd=2 sm=[ 1.48 -0.74 ] ss=1.434 ......Leaf n=1 <1> sm=[ 0.56 -0.36 ] ss=0.4432 ...Split cd=0 cv=0.4475 nd=4 sm=[ 2.68 -1 ] ss=2.373 ....Leaf n=1 <5> sm=[ 0.3 -0.08 ] ss=0.0964 ..Split cd=1 cv= -0.46 nd=8 sm=[ 4.27 -3.95 ] ss=5.586 .....Leaf n=1 <9> sm=[ 0.6 -0.55 ] ss=0.6625 ....Split cd=1 cv= -0.7 nd=2 sm=[ 1.34 -1.49 ] ss=2.094 .....Leaf n=1 <11> sm=[ 0.74 -0.94 ] ss=1.431 ...Split cd=0 cv=0.4475 nd=4 sm=[ 1.59 -2.95 ] ss=3.213 .....Leaf n=1 <10> sm=[ 0.18 -0.64 ] ss=0.442 ....Split cd=1 cv= -0.7 nd=2 sm=[ 0.25 -1.46 ] ss=1.119 .....Leaf n=1 <8> sm=[ 0.07 -0.82 ] ss=0.6773 .Split cd=0 cv=-0.025 nd=9 sm=[ 3.3 -4.17 ] ss=6.575 ..Leaf n=1 <12> sm=[ -0.97 -0.22 ] ss=0.9893] 0 [ 0 0 ] dist = 7.891e-309 1 [ 0 0 ] dist = 6.963e-77 2 [ 0 0 ] dist = 6.555e-260 3 [ 0 0 ] dist = 6.014e-154[Run_k-means: k-means_alg = lloyd data_size = 20 kcenters = 4 dim = 2 max_tot_stage = 20 max_run_stage = 3 min_accum_rdl = 0.2] 0 [ 0.18 -0.64 ] dist = 7.891e-309 1 [ 0.05 0.89 ] dist = 6.963e-77 2 [ -0.71 0.27 ] dist = 6.555e-260 3 [ 0.56 -0.36 ] dist = 6.014e-154 <stage: 0 curr: 0.1989 best: 0.1989 accumRDL: 0% > 0 [ 0.125 -0.73 ] dist = 0.0445 1 [ 0.1 0.8583 ] dist = 1.167 2 [ -0.6567 0.07333 ] dist = 0.4941 3 [ 0.6489 -0.2022 ] dist = 2.272 <stage: 1 curr: 0.1692 best: 0.1692 accumRDL: 14.92% > 0 [ 0.33 -0.8 ] dist = 0.4446 1 [ 0.1 0.8583 ] dist = 1.146 2 [ -0.6567 0.07333 ] dist = 0.3695 3 [ 0.6375 -0.11 ] dist = 1.424 <stage: 2 curr: 0.1557 best: 0.1557 accumRDL: 21.69% > <Generating new random centers> 0 [ 0.3975 -0.7375 ] dist = 0.4392 1 [ 0.1 0.8583 ] dist = 1.146 2 [ -0.6567 0.07333 ] dist = 0.3695 3 [ 0.6429 -0.04714 ] dist = 1.16 <stage: 3 curr: 0.1526 best: 0.1526 accumRDL: 1.981% > 0 [ 0.3975 -0.7375 ] dist = 0.4054 1 [ 0.1 0.8583 ] dist = 1.146 2 [ -0.6567 0.07333 ] dist = 0.3695 3 [ 0.6429 -0.04714 ] dist = 1.132 <stage: 4 curr: 0.1526 best: 0.1526 accumRDL: 1.981% > 0 [ 0.3975 -0.7375 ] dist = 0.4054 1 [ 0.1 0.8583 ] dist = 1.146 2 [ -0.6567 0.07333 ] dist = 0.3695 3 [ 0.6429 -0.04714 ] dist = 1.132 <stage: 5 curr: 0.1526 best: 0.1526 accumRDL: 1.981% > <Generating new random centers> 0 [ 0.91 0.87 ] dist = 0.4054 1 [ -0.08 0.61 ] dist = 1.146 2 [ 0.1 0.88 ] dist = 0.3695 3 [ -0.97 -0.22 ] dist = 1.132 <stage: 6 curr: 0.7204 best: 0.1526 accumRDL: -362.6% > 0 [ 0.878 0.188 ] dist = 3.358 1 [ 0.185 -0.01625 ] dist = 7.796 2 [ 0.09333 0.8967 ] dist = 0.0051 3 [ -0.3575 -0.3525 ] dist = 3.248 <stage: 7 curr: 0.2675 best: 0.1526 accumRDL: 62.86% > <Generating new random centers> 0 [ 0.878 0.188 ] dist = 1.028 1 [ 0.345 -0.2867 ] dist = 2.159 2 [ -0.062 0.856 ] dist = 0.4873 3 [ -0.3575 -0.3525 ] dist = 1.677 <stage: 8 curr: 0.2017 best: 0.1526 accumRDL: 24.6% > <Generating new random centers> 0 [ 0.878 0.188 ] dist = 1.028 1 [ 0.3729 -0.4786 ] dist = 1.467 2 [ -0.062 0.856 ] dist = 0.3584 3 [ -0.6567 0.07333 ] dist = 1.182 <stage: 9 curr: 0.1472 best: 0.1472 accumRDL: 27.04% > <Generating new random centers> 0 [ 0.8675 0.33 ] dist = 0.7032 1 [ 0.4413 -0.4662 ] dist = 1.513 2 [ -0.062 0.856 ] dist = 0.3584 3 [ -0.6567 0.07333 ] dist = 0.3695 <stage: 10 curr: 0.1412 best: 0.1412 accumRDL: 4.068% > 0 [ 0.8675 0.33 ] dist = 0.6221 1 [ 0.4413 -0.4662 ] dist = 1.474 2 [ -0.062 0.856 ] dist = 0.3584 3 [ -0.6567 0.07333 ] dist = 0.3695 <stage: 11 curr: 0.1412 best: 0.1412 accumRDL: 4.068% > 0 [ 0.8675 0.33 ] dist = 0.6221 1 [ 0.4413 -0.4662 ] dist = 1.474 2 [ -0.062 0.856 ] dist = 0.3584 3 [ -0.6567 0.07333 ] dist = 0.3695 <stage: 12 curr: 0.1412 best: 0.1412 accumRDL: 4.068% > <Generating new random centers> 0 [ 0.9 -0.18 ] dist = 0.6221 1 [ 0.92 -0.38 ] dist = 1.474 2 [ 0.16 0.04 ] dist = 0.3584 3 [ -0.51 0.98 ] dist = 0.3695 <stage: 13 curr: 0.3533 best: 0.1412 accumRDL: -140% > 0 [ 0.8675 0.33 ] dist = 1.667 1 [ 0.705 -0.5575 ] dist = 0.6073 2 [ -0.09167 -0.2583 ] dist = 2.808 3 [ -0.17 0.7583 ] dist = 1.983 <stage: 14 curr: 0.1863 best: 0.1412 accumRDL: 47.25% > <Generating new random centers> 0 [ 0.8567 0.5 ] dist = 0.3609 1 [ 0.744 -0.482 ] dist = 0.4769 2 [ -0.09167 -0.2583 ] dist = 1.894 3 [ -0.17 0.7583 ] dist = 0.9945 <stage: 15 curr: 0.1802 best: 0.1412 accumRDL: 3.305% > 0 [ 0.8567 0.5 ] dist = 0.2739 1 [ 0.744 -0.482 ] dist = 0.4408 2 [ -0.09167 -0.2583 ] dist = 1.894 3 [ -0.17 0.7583 ] dist = 0.9945 <stage: 16 curr: 0.1802 best: 0.1412 accumRDL: 3.305% > 0 [ 0.8567 0.5 ] dist = 0.2739 1 [ 0.744 -0.482 ] dist = 0.4408 2 [ -0.09167 -0.2583 ] dist = 1.894 3 [ -0.17 0.7583 ] dist = 0.9945 <stage: 17 curr: 0.1802 best: 0.1412 accumRDL: 3.305% > <Generating new random centers> 0 [ 0.91 0.87 ] dist = 0.2739 1 [ 0.9 -0.18 ] dist = 0.4408 2 [ -0.97 -0.22 ] dist = 1.894 3 [ 0.07 -0.82 ] dist = 0.9945 <stage: 18 curr: 0.391 best: 0.1412 accumRDL: -109.8% > 0 [ 0.3383 0.7733 ] dist = 3.215 1 [ 0.5971 -0.1929 ] dist = 1.523 2 [ -0.62 0.3 ] dist = 2.574 3 [ 0.33 -0.8 ] dist = 0.5078 <stage: 19 curr: 0.1692 best: 0.1412 accumRDL: 56.73% > <Generating new random centers> 0 [ 0.3383 0.7733 ] dist = 1.198 1 [ 0.5971 -0.1929 ] dist = 0.8793 2 [ -0.62 0.3 ] dist = 1.002 3 [ 0.33 -0.8 ] dist = 0.3038 <stage: 20 curr: 0.1692 best: 0.1412 accumRDL: 0% > <Generating new random centers>[k-means completed: n_stages = 20 total_time = 0.02 sec init_time = 0 sec stage_time = 0.001 sec/stage_(excl_init) 0.001 sec/stage_(incl_init) average_distort = 0.1412 (Final Center Points: 0 [ 0.8675 0.33 ] dist = 0.6221 1 [ 0.4413 -0.4662 ] dist = 1.474 2 [ -0.062 0.856 ] dist = 0.3584 3 [ -0.6567 0.07333 ] dist = 0.3695 )] (Cluster assignments: Point Center Squared Dist ----- ------ ------------ 0 3 0.1438 1 1 0.02539 2 0 0.2612 3 0 0.02236 4 1 0.3354 5 1 0.1691 6 2 0.02682 7 0 0.04516 8 1 0.263 9 1 0.03222 10 1 0.09844 11 1 0.3137 12 3 0.1842 13 0 0.2934 14 1 0.2366 15 3 0.04152 16 2 0.2161 17 2 0.04096 18 2 0.06084 19 2 0.0137 ) (Validating assignments. Found 0 mismatches.)<END_OF_RUN>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -