⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kmrand.h

📁 高效的k-means算法实现
💻 H
字号:
//----------------------------------------------------------------------//	File:		KMrand.h//	Programmer:	Sunil Arya and David Mount//	Last modified:	03/27/02//	Description:	Basic include file for random point generators//----------------------------------------------------------------------// Copyright (C) 2004-2005 David M. Mount and University of Maryland// All Rights Reserved.// // This program is free software; you can redistribute it and/or modify// it under the terms of the GNU General Public License as published by// the Free Software Foundation; either version 2 of the License, or (at// your option) any later version.  See the file Copyright.txt in the// main directory.// // The University of Maryland and the authors make no representations// about the suitability or fitness of this software for any purpose.// It is provided "as is" without express or implied warranty.//----------------------------------------------------------------------#ifndef KM_RAND_H#define KM_RAND_H//----------------------------------------------------------------------//  Basic includes//----------------------------------------------------------------------#include <cstdlib>			// standard C++ includes#include <math.h>			// math routines#include "KMeans.h"			// KMeans includes//----------------------------------------------------------------------//  Globals//----------------------------------------------------------------------extern	int	kmIdum;			// used for random number generation//----------------------------------------------------------------------//  External entry points//----------------------------------------------------------------------int kmRanInt(			// random integer	int		n);		// in the range [0,n-1]double kmRanUnif(		// random uniform in [lo,hi]	double		lo = 0.0,	double		hi = 1.0);void kmUniformPts(		// uniform distribution	KMpointArray	pa,		// point array (modified)	int		n,		// number of points	int		dim);		// dimensionvoid kmGaussPts(			// Gaussian distribution	KMpointArray	pa,		// point array (modified)	int		n,		// number of points	int		dim,		// dimension	double		std_dev);	// standard deviationvoid kmCoGaussPts(		// correlated-Gaussian distribution	KMpointArray	pa,		// point array (modified)	int		n,		// number of points	int		dim,		// dimension	double		correlation);	// correlationvoid kmLaplacePts(		// Laplacian distribution	KMpointArray	pa,		// point array (modified)	int		n,		// number of points	int		dim);		// dimensionvoid kmCoLaplacePts(		// correlated-Laplacian distribution	KMpointArray	pa,		// point array (modified)	int		n,		// number of points	int		dim,		// dimension	double		correlation);	// correlationvoid kmClusGaussPts(		// clustered-Gaussian distribution	KMpointArray	pa,		// point array (modified)	int		n,		// number of points	int		dim,		// dimension	int		n_col,		// number of colors (clusters)	bool		new_clust = true,   // generate new cluster centers	double		std_dev = 0.1,	    // std deviation within clusters	double*		clus_sep = NULL);   // cluster separation (returned)KMpointArray kmGetCGclusters(); // get clustered-gauss cluster centersvoid kmClusOrthFlats(           // clustered along orthogonal flats	KMpointArray	pa,		// point array (modified)	int		n,		// number of points	int		dim,		// dimension	int		n_col,		// number of colors	bool		new_clust,	// generate new clusters.	double		std_dev,	// standard deviation within clusters	int		max_dim);	// maximum dimension of the flatsvoid kmClusEllipsoids(		// clustered around ellipsoids	KMpointArray	pa,		// point array (modified)	int		n,		// number of points	int		dim,		// dimension	int		n_col,		// number of colors	bool		new_clust,	// generate new clusters.	double		std_dev_small,	// small standard deviation	double		std_dev_lo,	// low standard deviation for ellipses	double		std_dev_hi,	// high standard deviation for ellipses	int		max_dim);	// maximum dimension of the flatsvoid kmMultiClus(		// multi-sized clusters	KMpointArray	pa,		// point array (modified)	int		n,		// number of points	int		dim,		// dimension	int		&k,		// number of clusters (returned)	double		base_dev);	// base standard deviation#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -