⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 quickclu.cpp

📁 基本的k-means聚类算法c++实现
💻 CPP
字号:
#include <iostream.h>#include "KMeans.h"#include <stdlib.h>#include <fstream.h>#include <time.h>#include <math.h>#include <string.h>int main(int argc, char* argv[]){	int i,j;	int number = atoi(argv[2]);	int dimension = atoi(argv[3]);	int k = atoi(argv[4]);	int runtime = atoi(argv[5]);	int randomNum = atoi(argv[6]);	if(randomNum == -1)		randomNum = time(NULL);	//int randomNum = clock() % 1024;	cout << endl;	cout << "Point Num     : " << number << endl;	cout << "Dimension Num : " << dimension << endl;	cout << "k             : " << k << endl;	cout << "Run Time      : " << runtime << endl;	cout << "Random Number : " << randomNum << endl;	cout << "Input File    : " << argv[7] << endl;	ifstream input(argv[7]);	double** data = new double*[number];	for(i = 0; i < number; i++)	{		data[i] = new double[dimension];		for(j = 0; j < dimension; j++)			input >> data[i][j];	}	double** solution = new double*[k];	for(i = 0; i < k; i++)		solution[i] = new double[dimension];	//int startTime = clock();	int startTime = time(NULL);	if(!strcmp(argv[1], "-s"))	{		cout << "Cluster Type  : Standard" << endl;		KMeans kmeans(data, number, dimension);		kmeans.Cluster(solution, k, randomNum, runtime);	}	if(!strcmp(argv[1], "-a"))	{		cout << "Cluster Type  : Accelerated" << endl;		KMeans kmeans(data, number, dimension);		kmeans.AccCluster(solution, k, randomNum, runtime);	}	cout << "Time : " << time(NULL) - startTime << endl;	//cout << "Time : " << (double)(clock() - startTime)/CLOCKS_PER_SEC << endl;	for(i = 0; i < number; i++)		delete [] data[i];	delete [] data;	for(i = 0; i < k; i++)		delete [] solution[i];	delete [] solution;	return 0;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -