📄 figure7a_fivecrescents.m
字号:
% Five Crescent Distributions
% Results for one iteration and for the complete algorithm are shown
clear;
npts = 600;
[pts1] = randcrescent(npts,5,pi,[3 1],1, 1.8);
[pts2] = randcrescent(npts,25,-2*pi,[-9 9],1, 2.5);
[pts3] = randcrescent(npts,10,-3/2*pi,[-10 11],1, 1.8);
[pts4] = randcrescent(npts,10,-0.5*pi,[-20 10],1, 1.8);
[pts5] = randcrescent(npts,20,-pi,[-20 10],1, 2);
x = [pts1 pts2 pts3 pts4 pts5];
sigma = 10; % BandWidth
figure, plot(x(1,:),x(2,:),'r.'); axis equal; title('Raw Data'); box on; grid on;
D = dist(x).^2; % Compute Distance Matrix
% Single Iteration
[ar_mode,I,S,D,W] = medoidshiftIterative(D,NaN,sigma); % Step 1 of Medoidshift Algorithm (See paper)
visualizeClustering(ar_mode,x); % Visualize Result
title('Modes after a single iteration');
% Full medoidshift
[ar_mode2, iter] = medoidshift(D,sigma); % Complete Medoidshift Algorithm
visualizeClustering(ar_mode2,x); % Visualize Result
title(sprintf('Medoidshift Result: %d Iterations',iter));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -