📄 nnlist3.cpp
字号:
// HOPFIELD NET SIMULATOR /////////////////////////////////////////////////////////
// this simulator created based on Hebb Net software, very similar except that
// inputs act as outputs and weight matrix is always square
// INCLUDES //////////////////////////////////////////////////////////////////////
#include <conio.h>
#include <stdlib.h>
#include <malloc.h>
#include <memory.h>
#include <string.h>
#include <stdarg.h>
#include <stdio.h>
#include <math.h>
#include <io.h>
#include <fcntl.h>
// DEFINES ///////////////////////////////////////////////////////////////////////
#define MAX_NEURODES 16 // maximum number of inputs/outputs
#define ACTF_STEP 0 // use a binary step activation function fs(x)
#define ACTF_LINEAR 1 // use a linear activation function fl(s)
#define ACTF_EXP 2 // use an inverse exponential activation function fe(x)
// MACROS ////////////////////////////////////////////////////////////////////////
// used to retrieve the i,jth element of a linear, row major, matrix
#define MAT(mat,width,i,j) (mat[((width)*i)+(j)])
// GLOBALS ///////////////////////////////////////////////////////////////////////
float input_xi[MAX_NEURODES], // holds that input values
input_i[MAX_NEURODES], // holds a single input vector
output_i[MAX_NEURODES], // holds a single output vector
input_act[MAX_NEURODES], // holds the summed input activations
output_yi[MAX_NEURODES], // holds the output values
alpha = (float)1.0, // needed for exponential activation function
*weight_matrix = NULL; // dynamically allocated weight matrix
int num_neurodes, // number of inputs in heb net
activation_func = ACTF_STEP;// type of activation function to use
// FUNCTIONS /////////////////////////////////////////////////////////////////////
void Train_Net(void)
{
// this function is resposible for training the neural net using hebbian learning
// ask the user for another input/ouptput vector pair and then add the vectors contribution to
// the weight matrix and bias
printf("\nHopfield Training System.");
printf("\nTo train neural net you will enter each input vector to be recalled.");
printf("\nAll input vectors must be in bipolar form (1,-1,...1).");
printf("\nInput vectors an element at a time.");
printf("\n\nInput vectors have %d components",num_neurodes);
while(1)
{
// get the input vector
printf("\nEnter input vector elements\n");
for (int index=0; index<num_neurodes; index++)
{
printf("Input Vector Element[%d]=?",index);
scanf("%f",&input_i[index]);
} // end for
// train the net with new vector, note we process one neuron at a time
for (int index_j=0; index_j<num_neurodes; index_j++)
{
for (int index_i=0; index_i<num_neurodes; index_i++)
{
// use hebb learning alg. w=w+input(transpose)*input
MAT(weight_matrix,num_neurodes,index_i, index_j) += (input_i[index_i]*input_i[index_j]);
// test if i=j
if (index_i==index_j)
MAT(weight_matrix,num_neurodes,index_i, index_j) =(float)0.0;
} // end for index_i
} // end for index_j
printf("\nDo you wish to enter another input vector Y or N?");
char ans[8];
scanf("%s",ans);
if (toupper(ans[0])!='Y')
break;
} // end while
} // end Train_Net
//////////////////////////////////////////////////////////////////////////////////
void Run_Net(void)
{
// this function is responsible for running the net, it allows the user to enter test
// vectors and then computes the response of the network
printf("\nHopfield Autoassociative Memory Simulation System.");
printf("\nYou will enter in test input vectors in binary form.");
printf("\nAll inputs must have %d elements.\n",num_neurodes);
while(1)
{
// get the input vector
printf("\nEnter input vector elements\n");
for (int index=0; index<num_neurodes; index++)
{
printf("Input Vector Element[%d]=?",index);
scanf("%f",&input_i[index]);
} // end for
// now process the input by performing a matrix mutiply
// each weight vector is stored as a column in the weight matrix, so to process
// the input for each neurode, we simply must perform a dot product, and then input
// the result to the activation function, this is the basis of the parallel
// processing a neural net performs, all outputs are independent of the others
// loop thru the columns (outputs, neurodes)
for (int index_j=0; index_j<num_neurodes; index_j++)
{
// now compute a dot product with the input vector and the column
input_act[index_j] = (float)0.0; // reset activation
for (int index_i=0; index_i<num_neurodes; index_i++)
{
input_act[index_j] = input_act[index_j] +
(MAT(weight_matrix,num_neurodes,index_i, index_j) * input_i[index_i]);
} // end for index_i
// now compute output based on activation function
// note step should be used in most cases
if (activation_func==ACTF_STEP)
{
// perform step activation
if (input_act[index_j]>=(float)0.0)
output_yi[index_j] = (float)1.0;
else
output_yi[index_j] = (float)0.0;
} // end if
else
if (activation_func==ACTF_LINEAR)
{
// perform linear activation
output_yi[index_j] = input_act[index_j];
}
else
{
// must be exponential activation
output_yi[index_j] =(float)(1/(1+exp(-input_act[index_j]*alpha)));
} // end else exp
} // end for index_j
// now that ouputs have been computed print everything out
printf("\nNet inputs were:\n[");
for (index_j=0; index_j<num_neurodes; index_j++)
printf("%2.2f, ",input_act[index_j]);
printf("]\n");
printf("\nFinal Outputs after activation functions are:\n[");
for (index_j=0; index_j<num_neurodes; index_j++)
printf("%2.2f, ",output_yi[index_j]);
printf("]\n");
// test if input was recalled corretly
int bit_error=0;
for (int index_i = 0; index_i<num_neurodes; index_i++)
if (fabs(input_i[index_i]-output_yi[index_i])>.01)
{
bit_error++;
} // end if error
if (bit_error)
printf("\nThere were %d bit error(s) in recall, try re-inputing the output.", bit_error);
else
printf("\nPerfect Recall!");
printf("\nDo you wish to enter another test input Y or N?");
char ans[8];
scanf("%s",ans);
if (toupper(ans[0])!='Y')
break;
} // end while
} // end Run_Net
//////////////////////////////////////////////////////////////////////////////////
void Print_Net(void)
{
// this function prints out the current weight matrix and biases along with the specifics
// about the net
printf("\nThe Hopfield Net has %d neurodes/inputs/outputs",num_neurodes);
printf("\nThe weight matrix is %dX%d",num_neurodes, num_neurodes);
printf("\nThe W[i,j]th element refers to the weight from the ith to jth neurode\n");
for (int index_i = 0; index_i<num_neurodes;index_i++)
{
printf("\n|");
for (int index_j=0; index_j<num_neurodes; index_j++)
{
// data is in row major form
printf(" %2.2f ",MAT(weight_matrix,num_neurodes,index_i,index_j));
} // end for index_j
printf("|");
} // end for index_row
printf("\n");
} // end Print_Net
//////////////////////////////////////////////////////////////////////////////////
void Reset_Net(void)
{
// clear out all the matrices
memset(weight_matrix,0,num_neurodes*num_neurodes*sizeof(float));
} // end Reset_Net
// MAIN //////////////////////////////////////////////////////////////////////////
void main(void)
{
float FORCE_FP_LINK=(float)1.0; // needed for bug in VC++ fp lib link
printf("\nHopfield Neural Network Simulator.\n");
// querry user for parmaters of network
printf("\nEnter number of inputs (which is the same as outputs)?");
scanf("%d",&num_neurodes);
printf("\nSelect Activation Function (Hopfield usually uses Step)\n0=Step, 1=Linear, 2=Exponential?");
scanf("%d",&activation_func);
// test for exponential, get alpha is needed
if (activation_func == ACTF_EXP)
{
printf("\nEnter value for alpha (decimals allowed)?");
scanf("%f",&alpha);
} // end if
// allocate weight matrix it is mxn where m is the number of inputs and n is the
// number of outputs
weight_matrix = new float[num_neurodes*num_neurodes];
// clear out matrices
Reset_Net();
// enter main event loop
int sel=0,
done=0;
while(!done)
{
printf("\nHopfield Autoassociative Memory Main Menu\n");
printf("\n1. Input Training Vectors into Neural Net.");
printf("\n2. Run Neural Net.");
printf("\n3. Print Out Weight Matrix.");
printf("\n4. Reset Weight Matrix.");
printf("\n5. Exit Simulator.");
printf("\n\nSelect One Please?");
scanf("%d",&sel);
// what was the selection
switch(sel)
{
case 1: // Input Training Vectors into Neural Net
{
Train_Net();
} break;
case 2: // Run Neural Net
{
Run_Net();
} break;
case 3: // Print Out Weight Matrix
{
Print_Net();
} break;
case 4: // Reset Weight Matrix
{
Reset_Net();
} break;
case 5: // Exit Simulator
{
// set exit flag
done=1;
} break;
default:break;
} // end swtich
} // end while
// free up resources
delete [] weight_matrix;
} // end main
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -