⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rs.ps

📁 reed-solomon编码的java实现
💻 PS
📖 第 1 页 / 共 5 页
字号:
/:mi{italicmtx :mf fD}bd/:v{[exch dup/FontMatrix get exchdup/FontInfo known{/FontInfo getdup/UnderlinePosition known{dup/UnderlinePosition get2 index 03 1 rolltransformexch pop}{.1}ifelse3 1 rolldup/UnderlineThickness known{/UnderlineThickness getexch 0 3 1 rolltransformexch popabs}{pop pop .067}ifelse}{pop pop .1 .067}ifelse]}bd/$t Z/$p Z/$s Z/:p{aload pop2 index mul/$t xs1 index mul/$p xs.012 mul/$s xs}bd/:m{gS0 $p rm$t lw0 rl strokegR}bd/:n{gS0 $p rm$t lw0 rlgSglstrokegRstrokepath$s lw/setstrokeadjust where{popcurrentstrokeadjust T setstrokeadjust stroke setstrokeadjust}{stroke}ifelsegR}bd/:o{gS0 $p rm$t 2 div dup rm$t lwdup 0 rlstrokegR:n}bd%%EndFile/currentpacking where {pop sc_oldpacking setpacking}if end%%EndProlog%%BeginSetupmd begin/fD/def ld/sf/setfont ld /scf/scf2pass ld 600/languagelevel where{pop languagelevel 2 ge}{false}ifelse{1 dict dup/WaitTimeout 4 -1 roll put setuserparams}{statusdict/waittimeout 3 -1 roll put}ifelsesfcl{%%BeginFeature: *Duplex None1 dict dup /Duplex false put setpagedevice%%EndFeature}efclsfcl{%%BeginFeature: *BitsPerPixel None1 dict dup /PreRenderingEnhance false put setpagedevice%%EndFeature}efclsfcl{%%BeginFeature: *Smoothing False2 dict dup /PostRenderingEnhance false put setpagedevice%%EndFeature}efclsfcl{%%BeginFeature: *OutputOrder Normal1 dict dup /OutputFaceUp false put setpagedevice%%EndFeature}efclsfcl{%%BeginFeature: *ManualFeed False1 dict dup /ManualFeed false put setpagedevice%%EndFeature}efclsfcl{%%BeginFeature: *PageSize A4	2 dict dup /PageSize [595 842] put dup /ImagingBBox null put setpagedevice%%EndFeature}efcl(Benjamin Barras)setjob/mT[1 0 0 -1 10 831]def/sD 16 dict def%%IncludeFont: OldEnglishTextMT/f49/OldEnglishTextMT:mre/f66 f49 36 scf/u66 f49 :v fD%%IncludeFont: Helvetica/f79/Helvetica:mre/f93 f79 14.56 scf%%IncludeFont: Helvetica-Bold/f106/Helvetica-Bold:mre/f122 f106 14.56 scf/f135 f79 9.36 scf/f148 f79 10.4 scf/f161 f49 24 scf/f174 f49 24 scf/u174 f49 :v fD/f187 f79 12.48 scf%%IncludeFont: Symbol/f209/Symbol%%BeginFile: lw8_euroSpecial-1.0/nEro/Symbol findfontbeginFontTypedup dup1 eq exch 42 eq or exch 3 eq or{currentdict/CharStrings known{CharStrings/Euro known}{true}ifelse}{true}ifelseenddefnEro startnoload10 dict begin/FontInfo 2 dict dup begin/version(001.000)def/Notice(Copyright \251 1998 Apple Computer Inc.)defend def/FontName/Europatch def/Encoding StandardEncoding def/PaintType 0 def/FontType 1 def/FontMatrix[0.001 0 0 0.001 0 0]def/FontBBox{21 -9 714 689}defcurrentdict enddup/Private 15 dict dup begin/|-{def}def/|{put}def/BlueValues[-19. 0. 487. 500. 673. 688.]|-/BlueScale 0.0526315789 def/MinFeature{16 16}|-/StdHW[92.]def/StdVW[85.]def/StemSnapH[92.]def/StemSnapV[85.]def/ForceBoldThreshold .5 def/ForceBold false def/password 5839 def/Subrs 16 arraydup 0<118cade7978c9a8ab47e7be71fa277>|dup 1<118cade79273658a5c>|dup 2<118cade7927297416d>|dup 3<118cade712>|dup 4<118cade795e45b7819d5b190>|dup 5<118cade712>|dup 6<118cade712>|dup 7<118cade79266e29ec4a224>|dup 8<118cade7926513197e6246425e>|dup 9<118cade792645d0ab32061e2268dfb>|dup 10<118cade792638e135e25d183266bd7f81e>|dup 11<118cade7927439b1>|dup 12<118cade7e644d1e7a50cacbc>|dup 13<118cade78f9ed1e3fe>|dup 14<118cade7e0d1ca3c54>|dup 15<118cade78f9edf3959>||-2 index/CharStrings 2 dict dup begin/A<118cade7b98bc82571af5aee01f90103a394bff91b0ba5c07ffa5d64ff811d8a387b6ec3142e3c549269606becee2076d12186aced6d3558a7713c6635c038cf4bf8afc6076160e8ead2af8859f19c117df2af5a56fd0c316f31ba13c15c7ce3110f9d01081b9aeb32fbe8a3618047f1e92e6e08818a4bb109a567da3f88883d9eb237a4257a9535d72a66345d6a36508b96c2805a310781de324fe691942dd7947ac02673d33943c06ae133ef93a7292b6dab>|-/.notdef<118cade79205cabfe7>|-end endput putdup/FontName get exch definefont popnEro endnoload/subfontdict Z/subfontcharsize Zfindfont duplength 2 add dictbegin{1 index/FID ne 2 index/UniqueID ne and{def}{pop pop}ifelse}forallnEro not{/subfontdict[/Europatch findfont FontMatrixmatrix invertmatrix makefontdup dup length 2 add dictbegin{1 index/FID ne 2 index/UniqueID ne and{def}{pop pop}ifelse}forall/PaintType 2 def/StrokeWidth 12 def/customfont currentdictenddefinefont]defgsaveinitgraphics/subfontcharsize[subfontdict 0 get setfont(A)stringwidth0 0 moveto(A)true charpathpathbbox]defgrestore/CharStrings CharStringsdup length 1 add dictlevel2{copy}{begin{def}forallcurrentdictend}ifelsedup/Euro{subfontcharsize aload popsetcachedevicepopsubfontdict currentdict/PaintType getdup 0 ne{pop 1}ifget setfont0 0 moveto(A)show}bind putdef}if/Encoding Encoding 256 array copydup 240/apple pd160/Euro putdeffontname/customfont eq{/Symbol}{fontname}ifelsecurrentdictenddefinefont :ff fD%%EndFile/f221 f209 14 scf/f234 f79 14.56 scf/u234 f79 :v fD/f247 f106 14.56 scf/u247 f106 :v fD/Courier findfont[10 0 0 -10 0 0]:mf setfont%PostScript Hack by Mike Brors 12/7/90/DisableNextSetRGBColor	{	userdict begin	/setrgbcolor 		{		pop		pop		pop		userdict begin		/setrgbcolor systemdict /setrgbcolor get def		end		} def	end} bind def/bcarray where {	pop	bcarray 2 {		/da 4 ps div def		df setfont gsave cs wi		1 index 0 ne{exch da add exch}if grestore setcharwidth		cs 0 0 smc da 0 smc da da smc 0 da smc c		gray		{ gl}		{1 setgray}ifelse		da 2. div dup moveto show	}bind put} if%% Used to snap to device pixels, 1/4th of the pixel in./stp {  % x y  pl  x y                % Snap To Pixel, pixel  (auto stroke adjust)	transform	0.25 sub round 0.25 add exch	0.25 sub round 0.25 add exch	itransform} bind def/snapmoveto { % x y  m  -             % moveto, auto stroke adjust	stp  moveto} bind def/snaplineto { % x y  l  -             % lineto, auto stroke adjust	stp lineto} bind def%%EndSetup%%Page: 1 1%%BeginPageSetupinitializepage(Benjamin Barras; page: 1 of 24)setjob%%EndPageSetupgS 0 0 576 820 rC47 46 481 728 rC47 46 481 714 rCgRgS 11 10 553 750 rC47 75 :Mf66 sf36 u66 :p103.001 :m3.439(Index)A47 120 :Mf93 sf-.139(1.)A103 120 :Mf122 sf1.568 .157(Codes de Reed-Solomon . . . . . . . . . . . . . . . . . . . .)J487 120 :Mf93 sf(2)S47 139 :M.555 .056(1.1 )J117 139 :M.757(D\216finition)Af122 sf.833 .083(  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .)J487 139 :Mf93 sf(2)S47 158 :M.383(1.2)A117 158 :M.835(Information)Af122 sf.842 .084( . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . )J487 158 :Mf93 sf(2)S47 177 :M.555 .056(1.3 )J117 177 :M.91(Exemple)Af122 sf.742 .074(  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . )J487 177 :Mf93 sf(2)S47 196 :M-.139(2.)A103 196 :Mf122 sf1.131 .113(Corps de Galois . . . . . . . . . . . . . . . . . . . . . . . . . . . .)J487 196 :Mf93 sf(3)S47 215 :M.555 .056(2.1 )J117 215 :M3.821 .382(Propri\216t\216s d\325un corps fini)Jf122 sf.904 .09( . . . . . . . . . . . . . . . . . . . .)J487 215 :Mf93 sf(3)S47 234 :M.555 .056(2.2 )J117 234 :M3.183 .318(Construction  d\325un corps fini)Jf122 sf.828 .083( . . . . . . . . . . . . . . . . . .)J487 234 :Mf93 sf(4)S47 253 :M.388 .039(2.2.1 )J132 253 :M4.112 .411(Repr\216sentation des \216l\216ments )Jf122 sf.861 .086(. . . . . . . . . . . . . . .)J487 253 :Mf93 sf(4)S47 272 :M.388 .039(2.2.2 )J132 272 :M.884(Exemple)Af122 sf.739 .074( . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .)J487 272 :Mf93 sf(5)S47 291 :M-.139(3.)A103 291 :Mf122 sf1.324 .132(Technique de codage  . . . . . . . . . . . . . . . . . . . . . . .)J487 291 :Mf93 sf(8)S47 310 :M.555 .056(3.1 )J117 310 :M.885(Exemple)Af122 sf.739 .074( . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .)J487 310 :Mf93 sf1.812(10)A47 329 :M-.139(4.)A103 329 :Mf122 sf1.482 .148(Technique de d\216codage . . . . . . . . . . . . . . . . . . . . .)J487 329 :Mf93 sf1.812(11)A47 348 :M.555 .056(4.1 )J117 348 :M5.279 .528(Equation fondamentale)Jf122 sf.726 .073(  . . . . . . . . . . . . . . . . . . . . . .)J487 348 :Mf93 sf1.812(12)A47 367 :M.555 .056(4.2 )J117 367 :M5.569 .557(Algorithme d\325Euclide)Jf122 sf.852 .085( . . . . . . . . . . . . . . . . . . . . . . . .)J487 367 :Mf93 sf1.812(13)A47 386 :M.555 .056(4.3 )J117 386 :M6.296 .63(Reed-Solomon algorithme)Jf122 sf.815 .081(  . . . . . . . . . . . . . . . . . . .)J487 386 :Mf93 sf1.812(14)A47 405 :M.555 .056(4.4 )J117 405 :M2.404 .24(Sch\216ma d\325Horner  )Jf122 sf.64 .064(. . . . . . . . . . . . . . . . . . . . . . . . . . .)J487 405 :Mf93 sf1.812(15)A47 424 :M.555 .056(4.5 )J117 424 :M3.824 .382(Exemple de d\216codage)Jf122 sf.697 .07( . . . . . . . . . . . . . . . . . . . . . . .)J487 424 :Mf93 sf1.812(16)A47 443 :M.555 .056(4.6 )J117 443 :M3.691 .369(d\216tection d\325erreurs > t)Jf122 sf.921 .092(  . . . . . . . . . . . . . . . . . . . . . .)J487 443 :Mf93 sf1.812(18)A47 462 :M-.139(5.)A103 462 :Mf122 sf1.989 .199(Pr\216sentation du programme . . . . . . . . . . . . . . . . .)J487 462 :Mf93 sf1.812(19)A47 481 :M.555 .056(5.1 )J117 481 :M.785(Classes)Af122 sf.708 .071(  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .)J487 481 :Mf93 sf1.812(19)A47 500 :M.555 .056(5.2 )J117 500 :M3.664 .366(Liste de fichiers)Jf122 sf.893 .089(  . . . . . . . . . . . . . . . . . . . . . . . . . . .)J487 500 :Mf93 sf1.812(20)A47 519 :M-.139(6.)A103 519 :Mf122 sf.962 .096(Conclusions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .)J487 519 :Mf93 sf1.812(21)A47 538 :M.575(A.1)A103 538 :Mf122 sf.93 .093(Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .)J487 538 :Mf93 sf1.812(22)A47 557 :M.575(A.2)A103 557 :Mf122 sf1.114 .111(R\216f\216rences  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .)J487 557 :Mf93 sf1.812(24)AgRgS 47 761 481 13 rCgRgS 11 725 553 49 rC261 771 :Mf135 sf.413 .041(Page )Jf148 sf(1)SgRendpshowpage%%Page: 2 2%%BeginPageSetupinitializepage(Benjamin Barras; page: 2 of 24)setjob%%EndPageSetupgS 0 0 576 820 rC47 46 481 728 rC47 46 481 714 rCgRgS 11 10 553 750 rC47 65 :Mf161 sf3.671 .367(1. )Jf174 sf24 u174 :p286.128 :m11.427 1.143(Codes de Reed-Solomon)J47 113 :Mf161 sf5.682 .568(1.1 )Jf174 sf24 u174 :p119.709 :m2.336(D\216finition)A95 155 :Mf93 sf6.19 .619(Les codes de Reed-Solomon )J328 155 :M6.515 .652(RS\(k,t\) sont form\216s de n )J47 176 :M2.989 .299(symboles, avec n = q - 1 au maximum et )J355 176 :M1.74 .174(q = 2)Jf187 sf0 -4 rm.828(k)A0 4 rmf93 sf3.407 .341(, chaque symbole )J47 195 :M3.526 .353(appartenant \210 GF\(q\) qui est le corps de Galois \(Galois Field\) \210 q )J47 214 :M4.445 .444(\216l\216ments, k repr\216sente donc le nombre de bits par symbole. Le )J47 233 :M5.38 .538(nombre )J110 233 :M5.713 .571(t repr\216sente le nombre de symboles d\325erreurs que ce )J47 252 :M3.536 .354(code sera capable de corriger.)J47 271 :M( )S47 295 :Mf161 sf5.288 .529(1.2 )Jf174 sf24 u174 :p142.262 :m2.354(Information)A95 333 :Mf93 sf8.037 .804(Le nombre de symboles de contr\231le est de 2t. Par )J47 352 :M4.773 .477(cons\216quent, le nombre de symboles d\325information que l\325on peut  )J47 371 :M3.204 .32(transmettre est de m = n - 2t.)J47 414 :Mf161 sf4.831 .483(1.3 )Jf174 sf24 u174 :p98.9 :m2.528(Exemple)A95 452 :Mf93 sf4.617 .462(Soit le code RS\(4,3\) )J258 452 :M4.827 .483(form\216 de n = 15 symboles, chaque )J47 471 :M3.468 .347(symbole \216tant contenu dans )J257 471 :M2.792 .279(GF\(16\), donc 4 bits par symbole. Soit )J47 490 :M3.624 .362(sous forme polyn\231miale :)J76 528 :M1.534 .153(w\(x\) = w)Jf148 sf0 2 rm.455(14)A0 -2 rm.207 .021( )Jf93 sf.93 .093(. x)Jf148 sf0 -3 rm.455(14)A0 3 rmf93 sf.7 .07( +  w)Jf148 sf0 2 rm.455(13)A0 -2 rm.207 .021( )Jf93 sf.93 .093(. x)Jf148 sf0 -3 rm.455(13)A0 3 rmf93 sf.772 .077( +  ... + w)Jf148 sf0 2 rm.455(1)A0 -2 rm.207 .021( )Jf93 sf.93 .093(. x)Jf148 sf0 -3 rm.455(1)A0 3 rmf93 sf.889 .089( + w)Jf148 sf0 2 rm(0)S0 -2 rm76 549 :Mf93 sf2.069 .207(avec w)Jf148 sf0 2 rm.169(i)A0 -2 rmf93 sf1.661 .166( contenu dans GF\(16\) pour i = 0,..,14.)J47 589 :M7.355 .735(Les coefficients w)Jf148 sf0 2 rm1.406(0)A0 -2 rm.703(,)Af93 sf2.557(w)Af148 sf0 2 rm1.406(1)A0 -2 rm.703(,)Af93 sf.984(...)Af148 sf.703(,)Af93 sf2.557(w)Af148 sf0 2 rm1.406(5)A0 -2 rmf93 sf5.198 .52( sont les symboles du contr\231le de )J47 610 :M5.727 .573(parit\216 \(parity check\), et les coefficients )J358 610 :M1.57(w)Af148 sf0 2 rm.863(6)A0 -2 rm.432(,)Af93 sf1.57(w)Af148 sf0 2 rm.863(7)A0 -2 rm.432(,)Af93 sf.604(...)Af148 sf.432(,)Af93 sf1.57(w)Af148 sf0 2 rm.863(14)A0 -2 rmf93 sf3.742 .374( repr\216sente )J47 631 :M5.209 .521(les symboles d\325information \210 transmettre.)JgRgS 47 761 481 13 rCgRgS 11 725 553 49 rC261 771 :Mf135 sf.413 .041(Page )Jf148 sf(2)SgRendpshowpage%%Page: 3 3%%BeginPageSetupinitializepage(Benjamin Barras; page: 3 of 24)setjob%%EndPageSetupgS 0 0 576 820 rC47 46 481 728 rC47 46 481 714 rCgRgS 11 10 553 750 rC47 65 :Mf161 sf4.052 .405(2. )Jf174 sf24 u174 :p189.63 :m9.674 .967(Corps de Galois)J76 103 :Mf93 sf2.623 .262(La notation pour la suite, sera la suivante :)J76 141 :M3.203 .32(- F repr\216sente un corps fini \(Field\).)J76 160 :M1.887 .189(- F)Jf148 sf0 2 rm.797(p)A0 -2 rmf93 sf3.1 .31( repr\216sente le corps fini \210 p \216l\216ments.)J76 183 :M2.141 .214(- F)Jf187 sf0 -4 rm.76(*)A0 4 rmf93 sf3.93 .393( repr\216sente le groupe multiplicatif du corps F.)J47 226 :Mf161 sf5.996 .6(2.1 )Jf174 sf24 u174 :p302.268 :m10.088 1.009(Propri\216t\216s d\325un corps fini)J95 264 :Mf93 sf4.39 .439(On rappelle ici, quelques propri\216t\216s utiles des corps finis. )J47 283 :M3.155 .315(Soit F un corps fini de caract\216ristique p ayant q \216l\216ments. Alors,)J47 323 :M.422 .042(  a\))J82 323 :M1.853 .185(F est un F)Jf148 sf0 2 rm.654(p)A0 -2 rmf93 sf2.624 .262(-espace vectoriel de dimension k, avec q = p)Jf187 sf0 -4 rm.706(k)A0 4 rmf93 sf(.)S47 346 :M.857 .086(  b\))J82 346 :M2.874 .287(Le groupe additif de F est isomorphe au groupe \(Z/pZ,+\))Jf187 sf0 -4 rm.717(k)A0 4 rmf93 sf(.)S47 370 :M.776 .078(  c\))J82 370 :M1.362(F)Af148 sf0 -3 rm.619(*)A0 3 rmf93 sf

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -