📄 5.txt
字号:
attainfactor为解x处的目标规划因子;
exitflag为终止迭代的条件;
output为输出的优化信息;
lambda为解x处的Lagrange乘子
例5-14 控制系统输出反馈器设计。
设如下线性系统
其中:
要求设计输出反馈控制器K,使闭环系统
在复平面实轴上点[-5,-3,-1]的左侧有极点,并要求
解:上述问题就是要求解矩阵K,使矩阵(A+BKC)的极点为[-5,-3,-1],这是一个多目标规划问题。
先建立目标函数文件,保存为eigfun.m:
function F = eigfun(K,A,B,C)
F = sort(eig(A+B*K*C)); % 估计目标函数值
然后,输入参数并调用优化程序:
A = [-0.5 0 0; 0 -2 10; 0 1 -2];
B = [1 0; -2 2; 0 1];
C = [1 0 0; 0 0 1];
K0 = [-1 -1; -1 -1]; % 初始化控制器矩阵
goal = [-5 -3 -1]; % 为闭合环路的特征值(极点)设置目标值向量
weight = abs(goal) % 设置权值向量
lb = -4*ones(size(K0)); % 设置控制器的下界
ub = 4*ones(size(K0)); % 设置控制器的上界
options = optimset('Display','iter'); % 设置显示参数:显示每次迭代的输出
[K,fval,attainfactor] = fgoalattain(@eigfun,K0,goal,weight,[],[],[],[],lb,ub,[],options,A,B,C)
结果为:
weight =
5 3 1
Attainment Directional
Iter F-count factor Step-size derivative Procedure
1 6 1.885 1 1.03
2 13 1.061 1 -0.679
3 20 0.4211 1 -0.523 Hessian modified
4 27 -0.06352 1 -0.053 Hessian modified twice
5 34 -0.1571 1 -0.133
6 41 -0.3489 1 -0.00768 Hessian modified
7 48 -0.3643 1 -4.25e-005 Hessian modified
8 55 -0.3645 1 -0.00303 Hessian modified twice
9 62 -0.3674 1 -0.0213 Hessian modified
10 69 -0.3806 1 0.00266
11 76 -0.3862 1 -2.73e-005 Hessian modified twice
12 83 -0.3863 1 -1.22e-013 Hessian modified twice
Optimization terminated successfully:
Search direction less than 2*options. TolX and maximum constraint violation is less than options.TolCon
Active Constraints:
1
2
4
9
10
K =
-4.0000 -0.2564
-4.0000 -4.0000
fval =
-6.9313
-4.1588
-1.4099
attainfactor =
-0.3863
5.7 最小二乘最优问题
5.7.1 约束线性最小二乘
有约束线性最小二乘的标准形式为
sub.to
其中:C、A、Aeq为矩阵;d、b、beq、lb、ub、x是向量。
在MATLAB5.x中,约束线性最小二乘用函数conls求解。
函数 lsqlin
格式 x = lsqlin(C,d,A,b) %求在约束条件 下,方程Cx = d的最小二乘解x。
x = lsqlin(C,d,A,b,Aeq,beq) %Aeq、beq满足等式约束 ,若没有不等式约束,则设A=[ ],b=[ ]。
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub) %lb、ub满足 ,若没有等式约束,则Aeq=[ ],beq=[ ]。
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0) % x0为初始解向量,若x没有界,则lb=[ ],ub=[ ]。
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options) % options为指定优化参数
[x,resnorm] = lsqlin(…) % resnorm=norm(C*x-d)^2,即2-范数。
[x,resnorm,residual] = lsqlin(…) %residual=C*x-d,即残差。
[x,resnorm,residual,exitflag] = lsqlin(…) %exitflag为终止迭代的条件
[x,resnorm,residual,exitflag,output] = lsqlin(…) % output表示输出优化信息
[x,resnorm,residual,exitflag,output,lambda] = lsqlin(…) % lambda为解x的Lagrange乘子
例5-15 求解下面系统的最小二乘解
系统:Cx=d
约束: ;
先输入系统系数和x的上下界:
C = [0.9501 0.7620 0.6153 0.4057;…
0.2311 0.4564 0.7919 0.9354;…
0.6068 0.0185 0.9218 0.9169;…
0.4859 0.8214 0.7382 0.4102;…
0.8912 0.4447 0.1762 0.8936];
d = [ 0.0578; 0.3528; 0.8131; 0.0098; 0.1388];
A =[ 0.2027 0.2721 0.7467 0.4659;…
0.1987 0.1988 0.4450 0.4186;…
0.6037 0.0152 0.9318 0.8462];
b =[ 0.5251; 0.2026; 0.6721];
lb = -0.1*ones(4,1);
ub = 2*ones(4,1);
然后调用最小二乘命令:
[x,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b,[ ],[ ],lb,ub);
结果为:
x =
-0.1000
-0.1000
0.2152
0.3502
resnorm =
0.1672
residual =
0.0455
0.0764
-0.3562
0.1620
0.0784
exitflag =
1 %说明解x是收敛的
output =
iterations: 4
algorithm: 'medium-scale: active-set'
firstorderopt: []
cgiterations: []
lambda =
lower: [4x1 double]
upper: [4x1 double]
eqlin: [0x1 double]
ineqlin: [3x1 double]
通过lambda.ineqlin可查看非线性不等式约束是否有效。
5.7.2 非线性数据(曲线)拟合
非线性曲线拟合是已知输入向量xdata和输出向量ydata,并且知道输入与输出的函数关系为ydata=F(x, xdata),但不知道系数向量x。今进行曲线拟合,求x使得下式成立:
在MATLAB5.x中,使用函数curvefit解决这类问题。
函数 lsqcurvefit
格式 x = lsqcurvefit(fun,x0,xdata,ydata)
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub)
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options)
[x,resnorm] = lsqcurvefit(…)
[x,resnorm,residual] = lsqcurvefit(…)
[x,resnorm,residual,exitflag] = lsqcurvefit(…)
[x,resnorm,residual,exitflag,output] = lsqcurvefit(…)
[x,resnorm,residual,exitflag,output,lambda] = lsqcurvefit(…)
[x,resnorm,residual,exitflag,output,lambda,jacobian] =lsqcurvefit(…)
参数说明:
x0为初始解向量;xdata,ydata为满足关系ydata=F(x, xdata)的数据;
lb、ub为解向量的下界和上界 ,若没有指定界,则lb=[ ],ub=[ ];
options为指定的优化参数;
fun为拟合函数,其定义方式为:x = lsqcurvefit(@myfun,x0,xdata,ydata),
其中myfun已定义为 function F = myfun(x,xdata)
F = … % 计算x处拟合函数值fun的用法与前面相同;
resnorm=sum ((fun(x,xdata)-ydata).^2),即在x处残差的平方和;
residual=fun(x,xdata)-ydata,即在x处的残差;
exitflag为终止迭代的条件;
output为输出的优化信息;
lambda为解x处的Lagrange乘子;
jacobian为解x处拟合函数fun的jacobian矩阵。
例5-16 求解如下最小二乘非线性拟合问题
已知输入向量xdata和输出向量ydata,且长度都是n,拟合函数为
即目标函数为
其中:
初始解向量为x0=[0.3, 0.4, 0.1]。
解:先建立拟合函数文件,并保存为myfun.m
function F = myfun(x,xdata)
F = x(1)*xdata.^2 + x(2)*sin(xdata) + x(3)*xdata.^3;
然后给出数据xdata和ydata
>>xdata = [3.6 7.7 9.3 4.1 8.6 2.8 1.3 7.9 10.0 5.4];
>>ydata = [16.5 150.6 263.1 24.7 208.5 9.9 2.7 163.9 325.0 54.3];
>>x0 = [10, 10, 10]; %初始估计值
>>[x,resnorm] = lsqcurvefit(@myfun,x0,xdata,ydata)
结果为:
Optimization terminated successfully:
Relative function value changing by less than OPTIONS.TolFun
x =
0.2269 0.3385 0.3021
resnorm =
6.2950
5.7.3 非线性最小二乘
非线性最小二乘(非线性数据拟合)的标准形式为
其中:L为常数
在MATLAB5.x中,用函数leastsq解决这类问题,在6.0版中使用函数lsqnonlin。
设
则目标函数可表达为
其中:x为向量,F(x)为函数向量。
函数 lsqnonlin
格式 x = lsqnonlin(fun,x0) %x0为初始解向量;fun为 ,i=1,2,…,m,fun返回向量值F,而不是平方和值,平方和隐含在算法中,fun的定义与前面相同。
x = lsqnonlin(fun,x0,lb,ub) %lb、ub定义x的下界和上界: 。
x = lsqnonlin(fun,x0,lb,ub,options) %options为指定优化参数,若x没有界,则lb=[ ],ub=[ ]。
[x,resnorm] = lsqnonlin(…) % resnorm=sum(fun(x).^2),即解x处目标函数值。
[x,resnorm,residual] = lsqnonlin(…) % residual=fun(x),即解x处fun的值。
[x,resnorm,residual,exitflag] = lsqnonlin(…) %exitflag为终止迭代条件。
[x,resnorm,residual,exitflag,output] = lsqnonlin(…) %output输出优化信息。
[x,resnorm,residual,exitflag,output,lambda] = lsqnonlin(…) %lambda为Lagrage乘子。
[x,resnorm,residual,exitflag,output,lambda,jacobian] =lsqnonlin(…) %fun在解x处的Jacobian矩阵。
例5-17 求下面非线性最小二乘问题 初始解向量为x0=[0.3, 0.4]。
解:先建立函数文件,并保存为myfun.m,由于lsqnonlin中的fun为向量形式而不是平方和形式,因此,myfun函数应由 建立:
k=1,2,…,10
function F = myfun(x)
k = 1:10;
F = 2 + 2*k-exp(k*x(1))-exp(k*x(2));
然后调用优化程序:
x0 = [0.3 0.4];
[x,resnorm] = lsqnonlin(@myfun,x0)
结果为:
Optimization terminated successfully:
Norm of the current step is less than OPTIONS.TolX
x =
0.2578 0.2578
resnorm = %求目标函数值
124.3622
5.7.4 非负线性最小二乘
非负线性最小二乘的标准形式为:
sub.to
其中:矩阵C和向量d为目标函数的系数,向量x为非负独立变量。
在MATLAB5.x中,用函数nnls求解这类问题,在6.0版中则用函数lsqnonneg。
函数 lsqnonneg
格式 x = lsqnonneg(C,d) %C为实矩阵,d为实向量
x = lsqnonneg(C,d,x0) % x0为初始值且大于0
x = lsqnonneg(C,d,x0,options) % options为指定优化参数
[x,resnorm] = lsqnonneg(…) % resnorm=norm (C*x-d)^2
[x,resnorm,residual] = lsqnonneg(…) %residual=C*x-d
[x,resnorm,residual,exitflag] = lsqnonneg(…)
[x,resnorm,residual,exitflag,output] = lsqnonneg(…)
[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(…)
例5-18 一个最小二乘问题的无约束与非负约束解法的比较。
先输入数据:
>>C = [ 0.0372 0.2869; 0.6861 0.7071; 0.6233 0.6245; 0.6344 0.6170];
>>d = [0.8587; 0.1781; 0.0747; 0.8405];
>> [C\d, lsqnonneg(C,d)]
ans =
-2.5627 0
3.1108 0.6929
注意:1。当问题为无约束线性最小二乘问题时,使用MATLAB下的“\”运算即可以解决。2.对于非负最小二乘问题,调用lsqnonneg(C,d)求解。
5.8 非线性方程(组)求解
5.8.1 非线性方程的解
非线性方程的标准形式为f(x)=0
函数 fzero
格式 x = fzero (fun,x0) %用fun定义表达式f(x),x0为初始解。
x = fzero (fun,x0,options)
[x,fval] = fzero(…) %fval=f(x)
[x,fval,exitflag] = fzero(…)
[x,fval,exitflag,output] = fzero(…)
说明 该函数采用数值解求方程f(x)=0的根。
例5-19 求 的根
解:>> fun='x^3-2*x-5';
>> z=fzero(fun,2) %初始估计值为2
结果为
z =
2.0946
5.8.2 非线性方程组的解
非线性方程组的标准形式为:F(x) = 0
其中:x为向量,F(x)为函数向量。
函数 fsolve
格式 x = fsolve(fun,x0) %用fun定义向量函数,其定义方式为:先定义方程函数function F = myfun (x)。
F =[表达式1;表达式2;…表达式m] %保存为myfun.m,并用下面方式调用:x = fsolve(@myfun,x0),x0为初始估计值。
x = fsolve(fun,x0,options)
[x,fval] = fsolve(…) %fval=F(x),即函数值向量
[x,fval,exitflag] = fsolve(…)
[x,fval,exitflag,output] = fsolve(…)
[x,fval,exitflag,output,jacobian] = fsolve(…) % jacobian为解x处的Jacobian阵。
其余参数与前面参数相似。
例5-20 求下列系统的根
解:化为标准形式
设初值点为x0=[-5 -5]。
先建立方程函数文件,并保存为myfun.m:
function F = myfun(x)
F = [2*x(1) - x(2) - exp(-x(1));
-x(1) + 2*x(2) - exp(-x(2))];
然后调用优化程序
x0 = [-5; -5]; % 初始点
options=optimset('Display','iter'); % 显示输出信息
[x,fval] = fsolve(@myfun,x0,options)
结果为
Norm of First-order
Iteration Func-count f(x) step optimality CG-iterations
1 4 47071.2 1 2.29e+004 0
2 7 6527.47 1.45207 3.09e+003 1
3 10 918.372 1.49186 418 1
4 13 127.74 1.55326 57.3 1
5 16 14.9153 1.57591 8.26 1
6 19 0.779051 1.27662 1.14 1
7 22 0.00372453 0.484658 0.0683 1
8 25 9.21617e-008 0.0385552 0.000336 1
9 28 5.66133e-017 0.000193707 8.34e-009 1
Optimization terminated successfully:
Relative function value changing by less than OPTIONS.TolFun
x =
0.5671
0.5671
fval =
1.0e-008 *
-0.5320
-0.5320
例5-21 求矩阵x使其满足方程 ,并设初始解向量为x=[1, 1; 1, 1]。
解:先编写M文件:
function F = myfun(x)
F = x*x*x-[1,2;3,4];
然后调用优化程序求解:
>>x0 = ones(2,2); %初始解向量
>>options = optimset('Display','off'); %不显示优化信息
>>[x,Fval,exitflag] = fsolve(@myfun,x0,options)
则结果为
x =
-0.1291 0.8602
1.2903 1.1612
Fval =
1.0e-003 *
0.1541 -0.1163
0.0109 -0.0243
exitflag =
1
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -