📄 4.txt
字号:
D=var(X, 1) %返回向量(矩阵)X的简单方差(即置前因子为 的方差)
D=var(X, w) %返回向量(矩阵)X的以w为权重的方差
命令 求标准差
函数 std
格式 std(X) %返回向量(矩阵)X的样本标准差(置前因子为 )即:
std(X,1) %返回向量(矩阵)X的标准差(置前因子为 )
std(X, 0) %与std (X)相同
std(X, flag, dim) %返回向量(矩阵)中维数为dim的标准差值,其中flag=0时,置前因子为 ;否则置前因子为 。
例4-41 求下列样本的样本方差和样本标准差,方差和标准差
14.70 15.21 14.90 15.32 15.32
解:
>>X=[14.7 15.21 14.9 14.91 15.32 15.32];
>>DX=var(X,1) %方差
DX =
0.0559
>>sigma=std(X,1) %标准差
sigma =
0.2364
>>DX1=var(X) %样本方差
DX1 =
0.0671
>>sigma1=std(X) %样本标准差
sigma1 =
0.2590
命令 忽略NaN的标准差
函数 nanstd
格式 y = nanstd(X) %若X为含有元素NaN的向量,则返回除NaN外的元素的标准差,若X为含元素NaN的矩阵,则返回各列除NaN外的标准差构成的向量。
例4-42
>> M=magic(3) %产生3阶魔方阵
M =
8 1 6
3 5 7
4 9 2
>> M([1 6 8])=[NaN NaN NaN] %替换3阶魔方阵中第1、6、8个元素为NaN
M =
NaN 1 6
3 5 NaN
4 NaN 2
>> y=nanstd(M) %求忽略NaN的各列向量的标准差
y =
0.7071 2.8284 2.8284
>> X=[1 5]; %忽略NaN的第2列元素
>> y2=std(X) %验证第2列忽略NaN元素的标准差
y2 =
2.8284
命令 样本的偏斜度
函数 skewness
格式 y = skewness(X) %X为向量,返回X的元素的偏斜度;X为矩阵,返回X各列元素的偏斜度构成的行向量。
y = skewness(X,flag) %flag=0表示偏斜纠正,flag=1(默认)表示偏斜不纠正。
说明 偏斜度样本数据关于均值不对称的一个测度,如果偏斜度为负,说明均值左边的数据比均值右边的数据更散;如果偏斜度为正,说明均值右边的数据比均值左边的数据更散,因而正态分布的偏斜度为 0;偏斜度是这样定义的:
其中:μ为x的均值,σ为x的标准差,E(.)为期望值算子
例4-43
>> X=randn([5,4])
X =
0.2944 0.8580 -0.3999 0.6686
-1.3362 1.2540 0.6900 1.1908
0.7143 -1.5937 0.8156 -1.2025
1.6236 -1.4410 0.7119 -0.0198
-0.6918 0.5711 1.2902 -0.1567
>> y=skewness(X)
y =
-0.0040 -0.3136 -0.8865 -0.2652
>> y=skewness(X,0)
y =
-0.0059 -0.4674 -1.3216 -0.3954
4.5.5 常见分布的期望和方差
命令 均匀分布(连续)的期望和方差
函数 unifstat
格式 [M,V] = unifstat(A,B) %A、B为标量时,就是区间上均匀分布的期望和方差,A、B也可为向量或矩阵,则M、V也是向量或矩阵。
例4-44
>>a = 1:6; b = 2.*a;
>>[M,V] = unifstat(a,b)
M =
1.5000 3.0000 4.5000 6.0000 7.5000 9.0000
V =
0.0833 0.3333 0.7500 1.3333 2.0833 3.0000
命令 正态分布的期望和方差
函数 normstat
格式 [M,V] = normstat(MU,SIGMA) %MU、SIGMA可为标量也可为向量或矩阵,则M=MU,V=SIGMA2。
例4-45
>> n=1:4;
>> [M,V]=normstat(n'*n,n'*n)
M =
1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16
V =
1 4 9 16
4 16 36 64
9 36 81 144
16 64 144 256
命令 二项分布的均值和方差
函数 binostat
格式 [M,V] = binostat(N,P) %N,P为二项分布的两个参数,可为标量也可为向量或矩阵。
例4-46
>>n = logspace(1,5,5)
n =
10 100 1000 10000 100000
>>[M,V] = binostat(n,1./n)
M =
1 1 1 1 1
V =
0.9000 0.9900 0.9990 0.9999 1.0000
>>[m,v] = binostat(n,1/2)
m =
5 50 500 5000 50000
v =
1.0e+04 *
0.0003 0.0025 0.0250 0.2500 2.5000
常见分布的期望和方差见下表4-6。
表4-6 常见分布的均值和方差
函数名 调用形式 注 释
unifstat [M,V]=unifstat ( a, b) 均匀分布(连续)的期望和方差,M为期望,V为方差
unidstat [M,V]=unidstat (n) 均匀分布(离散)的期望和方差
expstat [M,V]=expstat (p, Lambda) 指数分布的期望和方差
normstat [M,V]=normstat(mu,sigma) 正态分布的期望和方差
chi2stat [M,V]=chi2stat (x, n) 卡方分布的期望和方差
tstat [M,V]=tstat ( n) t分布的期望和方差
fstat [M,V]=fstat ( n1, n2) F分布的期望和方差
gamstat [M,V]=gamstat ( a, b) 分布的期望和方差betastat [M,V]=betastat ( a, b) 分布的期望和方差lognstat [M,V]=lognstat ( mu, sigma) 对数正态分布的期望和方差
nbinstat [M,V]=nbinstat ( R, P) 负二项式分布的期望和方差
ncfstat [M,V]=ncfstat ( n1, n2, delta) 非中心F分布的期望和方差
nctstat [M,V]=nctstat ( n, delta) 非中心t分布的期望和方差
ncx2stat [M,V]=ncx2stat ( n, delta) 非中心卡方分布的期望和方差
raylstat [M,V]=raylstat ( b) 瑞利分布的期望和方差
Weibstat [M,V]=weibstat ( a, b) 韦伯分布的期望和方差
Binostat [M,V]=binostat (n,p) 二项分布的期望和方差
Geostat [M,V]=geostat (p) 几何分布的期望和方差
hygestat [M,V]=hygestat (M,K,N) 超几何分布的期望和方差
Poisstat [M,V]=poisstat (Lambda) 泊松分布的期望和方差
4.5.6 协方差与相关系数
命令 协方差
函数 cov
格式 cov(X) %求向量X的协方差
cov(A) %求矩阵A的协方差矩阵,该协方差矩阵的对角线元素是A的各列的方差,即:var(A)=diag(cov(A))。
cov(X,Y) %X,Y为等长列向量,等同于cov([X Y])。
例4-47
>> X=[0 -1 1]';Y=[1 2 2]';
>> C1=cov(X) %X的协方差
C1 =
1
>> C2=cov(X,Y) %列向量X、Y的协方差矩阵,对角线元素为各列向量的方差
C2 =
1.0000 0
0 0.3333
>> A=[1 2 3;4 0 -1;1 7 3]
A =
1 2 3
4 0 -1
1 7 3
>> C1=cov(A) %求矩阵A的协方差矩阵
C1 =
3.0000 -4.5000 -4.0000
-4.5000 13.0000 6.0000
-4.0000 6.0000 5.3333
>> C2=var(A(:,1)) %求A的第1列向量的方差
C2 =
3
>> C3=var(A(:,2)) %求A的第2列向量的方差
C3 =
13
>> C4=var(A(:,3))
C4 =
5.3333
命令 相关系数
函数 corrcoef
格式 corrcoef(X,Y) %返回列向量X,Y的相关系数,等同于corrcoef([X Y])。
corrcoef (A) %返回矩阵A的列向量的相关系数矩阵
例4-48
>> A=[1 2 3;4 0 -1;1 3 9]
A =
1 2 3
4 0 -1
1 3 9
>> C1=corrcoef(A) %求矩阵A的相关系数矩阵
C1 =
1.0000 -0.9449 -0.8030
-0.9449 1.0000 0.9538
-0.8030 0.9538 1.0000
>> C1=corrcoef(A(:,2),A(:,3)) %求A的第2列与第3列列向量的相关系数矩阵
C1 =
1.0000 0.9538
0.9538 1.0000
4.6 统计作图
4.6.1 正整数的频率表
命令 正整数的频率表
函数 tabulate
格式 table = tabulate(X) %X为正整数构成的向量,返回3列:第1列中包含X的值第2列为这些值的个数,第3列为这些值的频率。
例4-49
>> A=[1 2 2 5 6 3 8]
A =
1 2 2 5 6 3 8
>> tabulate(A)
Value Count Percent
1 1 14.29%
2 2 28.57%
3 1 14.29%
4 0 0.00%
5 1 14.29%
6 1 14.29%
7 0 0.00%
8 1 14.29%
4.6.2 经验累积分布函数图形
函数 cdfplot
格式 cdfplot(X) %作样本X(向量)的累积分布函数图形
h = cdfplot(X) %h表示曲线的环柄
[h,stats] = cdfplot(X) %stats表示样本的一些特征
例4-50
>> X=normrnd (0,1,50,1);
>> [h,stats]=cdfplot(X)
h =
3.0013
stats =
min: -1.8740 %样本最小值
max: 1.6924 %最大值
mean: 0.0565 %平均值
median: 0.1032 %中间值
std: 0.7559 %样本标准差
4.6.3 最小二乘拟合直线
函数 lsline
格式 lsline %最小二乘拟合直线
h = lsline %h为直线的句柄
例4-51
>> X = [2 3.4 5.6 8 11 12.3 13.8 16 18.8 19.9]';
>> plot(X,'+')
>> lsline
4.6.4 绘制正态分布概率图形
函数 normplot
格式 normplot(X) %若X为向量,则显示正态分布概率图形,若X为矩阵,则显示每一列的正态分布概率图形。
h = normplot(X) %返回绘图直线的句柄
说明 样本数据在图中用“+”显示;如果数据来自正态分布,则图形显示为直线,而其它分布可能在图中产生弯曲。
例4-53
>> X=normrnd(0,1,50,1);
>> normplot(X)
图4-12
4.6.5 绘制威布尔(Weibull)概率图形
函数 weibplot
格式 weibplot(X) %若X为向量,则显示威布尔(Weibull)概率图形,若X为矩阵,则显示每一列的威布尔概率图形。
h = weibplot(X) %返回绘图直线的柄
说明 绘制威布尔(Weibull)概率图形的目的是用图解法估计来自威布尔分布的数据X,如果X是威布尔分布数据,其图形是直线的,否则图形中可能产生弯曲。
例4-54
>> r = weibrnd(1.2,1.5,50,1);
>> weibplot(r)
图4-13
4.6.6 样本数据的盒图
函数 boxplot
格式 boxplot(X) %产生矩阵X的每一列的盒图和“须”图,“须”是从盒的尾部延伸出来,并表示盒外数据长度的线,如果“须”的外面没有数据,则在“须”的底部有一个点。
boxplot(X,notch) %当notch=1时,产生一凹盒图,notch=0时产生一矩箱图。
boxplot(X,notch,'sym') %sym表示图形符号,默认值为“+”。
boxplot(X,notch,'sym',vert) %当vert=0时,生成水平盒图,vert=1时,生成竖直盒图(默认值vert=1)。
boxplot(X,notch,'sym',vert,whis) %whis定义“须”图的长度,默认值为1.5,若whis=0则boxplot函数通过绘制sym符号图来显示盒外的所有数据值。
例4-55
>>x1 = normrnd(5,1,100,1);
>>x2 = normrnd(6,1,100,1);
>>x = [x1 x2];
>> boxplot(x,1,'g+',1,0)
图4-14
4.6.7 给当前图形加一条参考线
函数 refline
格式 refline(slope,intercept) % slope表示直线斜率,intercept表示截距
refline(slope) slope=[a b],图中加一条直线:y=b+ax。
例4-56
>>y = [3.2 2.6 3.1 3.4 2.4 2.9 3.0 3.3 3.2 2.1 2.6]';
>>plot(y,'+')
>>refline(0,3)
图4-15
4.6.8 在当前图形中加入一条多项式曲线
函数 refcurve
格式 h = refcurve(p) %在图中加入一条多项式曲线,h为曲线的环柄,p为多项式系数向量,p=[p1,p2, p3,…,pn],其中p1为最高幂项系数。
例4-57 火箭的高度与时间图形,加入一条理论高度曲线,火箭初速为100m/秒。
>>h = [85 162 230 289 339 381 413 437 452 458 456 440 400 356];
>>plot(h,'+')
>>refcurve([-4.9 100 0])
图4-16
4.6.9 样本的概率图形
函数 capaplot
格式 p = capaplot(data,specs) %data为所给样本数据,specs指定范围,p表示在指定范围内的概率。
说明 该函数返回来自于估计分布的随机变量落在指定范围内的概率
例4-58
>> data=normrnd (0,1,30,1);
>> p=capaplot(data,[-2,2])
p =
0.9199
图4-17
4.6.10 附加有正态密度曲线的直方图
函数 histfit
格式 histfit(data) %data为向量,返回直方图
和正态曲线。
histfit(data,nbins) % nbins指定bar的个数,
缺省时为data中数据个数的平方根。
例4-59
>>r = normrnd (10,1,100,1);
>>histfit(r)
4.6.11 在指定的界线之间画正态密度曲线
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -