📄 demospinorderivative.m
字号:
disp('>> % |'); % | disp('>> % | THE DERIVATIVE OF A SPINOR'); % | THE DERIVATIVE OF A SPINOR disp('>> % |'); % | i = unit(e1^(e2/2+e3/3)); %/ % rotation plane n = 16; %/ % number of rotation steps phi = i*2*pi/n; %/ % rotation angle bivector R = gexp(-phi/2); %/ disp('>> a = e1-e2+e3; % vector to be rotated'); a = e1-e2+e3; % vector to be rotated clf; %/ draw(i,'y'); %/ draw(a,'r'); GAtext(1.1*a,'a'); %/ axis off; %/ GAview([-30 30]); %/ axis([-1.1 1.1 -1.7 0.7 -0.5 2]) %/ disp('>> % | Vector a and spinor plane '); % | Vector a and spinor plane disp('>> % |'); % | GAprompt; %/ disp('>> % | Derivative is vector proportional to x.i'); % | Derivative is vector proportional to x.i disp('>> % |'); % | title('constant i, then \partial_t(e^{-i\phi/2} a e^{i\phi/2}) = (a \bullet i) \partial_t\phi'); %/ draw(inner(a,phi),'b'); %/ axis([-1.1 1.1 -1.7 0.7 -0.5 2]) %/ GAprompt; %/ disp('>> % |'); % | disp('>> % | Capable of locally rotating the vector a.'); % | Capable of locally rotating the vector a. for j=1:n %/ anow = a; %/ adernow = inner(anow,phi); % derivative formula %/ draw(anow,'r'); %/ draw(adernow,'b'); %/ DrawPolyline({anow-adernow/2,anow+adernow/2},'b'); %/ axis([-1.1 1.1 -1.7 0.7 -0.5 2]) %/ drawnow; %/ a = R*anow/R; %/ end %/ GAorbiter(-360,10); %/ disp('>> % |'); % |
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -