📄 demoinner.m
字号:
disp('>> % INNER PRODUCT'); % INNER PRODUCT GAfigure; clc; %/ disp('>> % INNER PRODUCT'); % INNER PRODUCT disp('>> %'); % global x B v w; %/ clf; %/ disp('>> % The inner product of two vectors is a scalar '); % The inner product of two vectors is a scalar disp('>> % (its magnitude denotes the relative angle)'); % (its magnitude denotes the relative angle) fprintf(1,'\n'); disp('>> v = e1;'); v = e1; disp('>> w = unit(e1 + e2);'); w = unit(e1 + e2); draw(v,'b'); %/ GAtext(0.7*v - 0.1*unit(e2^v)/I3,'v'); %/ draw(w,'g'); %/ GAtext(0.7*w + 0.1*unit(e2^w)/I3,'w'); %/ fprintf(1,'>> inner(v,w) '); input(''); inner(v,w) %w disp('>> % Geometrically, this is a zero-dimensional subspace:'); % Geometrically, this is a zero-dimensional subspace: disp('>> % a weighted point at the origin.'); % a weighted point at the origin. draw(inner(v,w),'r'); %/ draw(I3/100000,'r'); %/ GAprompt; %/ fprintf(1,'\n'); disp('>> % The inner product x.B of a vector x and a bivector B is '); % The inner product x.B of a vector x and a bivector B is disp('>> % a vector in B, perpendicular to x'); % a vector in B, perpendicular to x disp('>> % (its magnitude denotes the relative angle)'); % (its magnitude denotes the relative angle) fprintf(1,'\n'); clf; %/ disp('>> x = unit(e1 + e3); '); x = unit(e1 + e3); draw(x,'b'); %/ GAtext(0.7*x + 0.1*unit(e2^x)/I3,'x'); %/ disp('>> B = e1^e2; '); B = e1^e2; draw(B,'y'); %/ GAtext(-0.5*v+0.1*B/I3,'B'); %/ fprintf(1,'>> inner(x,B) '); input(''); inner(x,B) %w axis off; %/ draw(inner(x,B),'r'); %/ GAtext(inner(x,B)+0.1*B/I3,'x \bullet B'); GAprompt; %/ disp('>> % Spinning shows that x.B is "the part of B least like x".'); % Spinning shows that x.B is "the part of B least like x". GAorbiter(-360,10); %/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -