📄 func.c
字号:
}static void test_destructor_count( sqlite3_context *pCtx, int nArg, sqlite3_value **argv){ sqlite3_result_int(pCtx, test_destructor_count_var);}#endif /* SQLITE_TEST */#ifdef SQLITE_TEST/*** Routines for testing the sqlite3_get_auxdata() and sqlite3_set_auxdata()** interface.**** The test_auxdata() SQL function attempts to register each of its arguments** as auxiliary data. If there are no prior registrations of aux data for** that argument (meaning the argument is not a constant or this is its first** call) then the result for that argument is 0. If there is a prior** registration, the result for that argument is 1. The overall result** is the individual argument results separated by spaces.*/static void free_test_auxdata(void *p) {sqliteFree(p);}static void test_auxdata( sqlite3_context *pCtx, int nArg, sqlite3_value **argv){ int i; char *zRet = sqliteMalloc(nArg*2); if( !zRet ) return; for(i=0; i<nArg; i++){ char const *z = sqlite3_value_text(argv[i]); if( z ){ char *zAux = sqlite3_get_auxdata(pCtx, i); if( zAux ){ zRet[i*2] = '1'; if( strcmp(zAux, z) ){ sqlite3_result_error(pCtx, "Auxilary data corruption", -1); return; } }else{ zRet[i*2] = '0'; zAux = sqliteStrDup(z); sqlite3_set_auxdata(pCtx, i, zAux, free_test_auxdata); } zRet[i*2+1] = ' '; } } sqlite3_result_text(pCtx, zRet, 2*nArg-1, free_test_auxdata);}#endif /* SQLITE_TEST */#ifdef SQLITE_TEST/*** A function to test error reporting from user functions. This function** returns a copy of it's first argument as an error.*/static void test_error( sqlite3_context *pCtx, int nArg, sqlite3_value **argv){ sqlite3_result_error(pCtx, sqlite3_value_text(argv[0]), 0);}#endif /* SQLITE_TEST *//*** An instance of the following structure holds the context of a** sum() or avg() aggregate computation.*/typedef struct SumCtx SumCtx;struct SumCtx { double sum; /* Sum of terms */ int cnt; /* Number of elements summed */ u8 seenFloat; /* True if there has been any floating point value */};/*** Routines used to compute the sum or average.*/static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){ SumCtx *p; int type; assert( argc==1 ); p = sqlite3_aggregate_context(context, sizeof(*p)); type = sqlite3_value_type(argv[0]); if( p && type!=SQLITE_NULL ){ p->sum += sqlite3_value_double(argv[0]); p->cnt++; if( type==SQLITE_FLOAT ){ p->seenFloat = 1; } }}static void sumFinalize(sqlite3_context *context){ SumCtx *p; p = sqlite3_aggregate_context(context, 0); if( p && p->cnt>0 ){ if( p->seenFloat ){ sqlite3_result_double(context, p->sum); }else{ sqlite3_result_int64(context, (i64)p->sum); } }}static void avgFinalize(sqlite3_context *context){ SumCtx *p; p = sqlite3_aggregate_context(context, 0); if( p && p->cnt>0 ){ sqlite3_result_double(context, p->sum/(double)p->cnt); }}/*** An instance of the following structure holds the context of a** variance or standard deviation computation.*/typedef struct StdDevCtx StdDevCtx;struct StdDevCtx { double sum; /* Sum of terms */ double sum2; /* Sum of the squares of terms */ int cnt; /* Number of terms counted */};/*** The following structure keeps track of state information for the** count() aggregate function.*/typedef struct CountCtx CountCtx;struct CountCtx { int n;};/*** Routines to implement the count() aggregate function.*/static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){ CountCtx *p; p = sqlite3_aggregate_context(context, sizeof(*p)); if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){ p->n++; }} static void countFinalize(sqlite3_context *context){ CountCtx *p; p = sqlite3_aggregate_context(context, 0); sqlite3_result_int(context, p ? p->n : 0);}/*** Routines to implement min() and max() aggregate functions.*/static void minmaxStep(sqlite3_context *context, int argc, sqlite3_value **argv){ Mem *pArg = (Mem *)argv[0]; Mem *pBest; if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest)); if( !pBest ) return; if( pBest->flags ){ int max; int cmp; CollSeq *pColl = sqlite3GetFuncCollSeq(context); /* This step function is used for both the min() and max() aggregates, ** the only difference between the two being that the sense of the ** comparison is inverted. For the max() aggregate, the ** sqlite3_user_data() function returns (void *)-1. For min() it ** returns (void *)db, where db is the sqlite3* database pointer. ** Therefore the next statement sets variable 'max' to 1 for the max() ** aggregate, or 0 for min(). */ max = ((sqlite3_user_data(context)==(void *)-1)?1:0); cmp = sqlite3MemCompare(pBest, pArg, pColl); if( (max && cmp<0) || (!max && cmp>0) ){ sqlite3VdbeMemCopy(pBest, pArg); } }else{ sqlite3VdbeMemCopy(pBest, pArg); }}static void minMaxFinalize(sqlite3_context *context){ sqlite3_value *pRes; pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0); if( pRes ){ if( pRes->flags ){ sqlite3_result_value(context, pRes); } sqlite3VdbeMemRelease(pRes); }}/*** This function registered all of the above C functions as SQL** functions. This should be the only routine in this file with** external linkage.*/void sqlite3RegisterBuiltinFunctions(sqlite3 *db){ static const struct { char *zName; signed char nArg; u8 argType; /* 0: none. 1: db 2: (-1) */ u8 eTextRep; /* 1: UTF-16. 0: UTF-8 */ u8 needCollSeq; void (*xFunc)(sqlite3_context*,int,sqlite3_value **); } aFuncs[] = { { "min", -1, 0, SQLITE_UTF8, 1, minmaxFunc }, { "min", 0, 0, SQLITE_UTF8, 1, 0 }, { "max", -1, 2, SQLITE_UTF8, 1, minmaxFunc }, { "max", 0, 2, SQLITE_UTF8, 1, 0 }, { "typeof", 1, 0, SQLITE_UTF8, 0, typeofFunc }, { "length", 1, 0, SQLITE_UTF8, 0, lengthFunc }, { "substr", 3, 0, SQLITE_UTF8, 0, substrFunc },#ifndef SQLITE_OMIT_UTF16 { "substr", 3, 0, SQLITE_UTF16LE, 0, sqlite3utf16Substr },#endif { "abs", 1, 0, SQLITE_UTF8, 0, absFunc }, { "round", 1, 0, SQLITE_UTF8, 0, roundFunc }, { "round", 2, 0, SQLITE_UTF8, 0, roundFunc }, { "upper", 1, 0, SQLITE_UTF8, 0, upperFunc }, { "lower", 1, 0, SQLITE_UTF8, 0, lowerFunc }, { "coalesce", -1, 0, SQLITE_UTF8, 0, ifnullFunc }, { "coalesce", 0, 0, SQLITE_UTF8, 0, 0 }, { "coalesce", 1, 0, SQLITE_UTF8, 0, 0 }, { "ifnull", 2, 0, SQLITE_UTF8, 1, ifnullFunc }, { "random", -1, 0, SQLITE_UTF8, 0, randomFunc }, { "nullif", 2, 0, SQLITE_UTF8, 1, nullifFunc }, { "sqlite_version", 0, 0, SQLITE_UTF8, 0, versionFunc}, { "quote", 1, 0, SQLITE_UTF8, 0, quoteFunc }, { "last_insert_rowid", 0, 1, SQLITE_UTF8, 0, last_insert_rowid }, { "changes", 0, 1, SQLITE_UTF8, 0, changes }, { "total_changes", 0, 1, SQLITE_UTF8, 0, total_changes },#ifdef SQLITE_SOUNDEX { "soundex", 1, 0, SQLITE_UTF8, 0, soundexFunc},#endif#ifdef SQLITE_TEST { "randstr", 2, 0, SQLITE_UTF8, 0, randStr }, { "test_destructor", 1, 1, SQLITE_UTF8, 0, test_destructor}, { "test_destructor_count", 0, 0, SQLITE_UTF8, 0, test_destructor_count}, { "test_auxdata", -1, 0, SQLITE_UTF8, 0, test_auxdata}, { "test_error", 1, 0, SQLITE_UTF8, 0, test_error},#endif }; static const struct { char *zName; signed char nArg; u8 argType; u8 needCollSeq; void (*xStep)(sqlite3_context*,int,sqlite3_value**); void (*xFinalize)(sqlite3_context*); } aAggs[] = { { "min", 1, 0, 1, minmaxStep, minMaxFinalize }, { "max", 1, 2, 1, minmaxStep, minMaxFinalize }, { "sum", 1, 0, 0, sumStep, sumFinalize }, { "avg", 1, 0, 0, sumStep, avgFinalize }, { "count", 0, 0, 0, countStep, countFinalize }, { "count", 1, 0, 0, countStep, countFinalize }, }; int i; for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){ void *pArg = 0; switch( aFuncs[i].argType ){ case 1: pArg = db; break; case 2: pArg = (void *)(-1); break; } sqlite3_create_function(db, aFuncs[i].zName, aFuncs[i].nArg, aFuncs[i].eTextRep, pArg, aFuncs[i].xFunc, 0, 0); if( aFuncs[i].needCollSeq ){ FuncDef *pFunc = sqlite3FindFunction(db, aFuncs[i].zName, strlen(aFuncs[i].zName), aFuncs[i].nArg, aFuncs[i].eTextRep, 0); if( pFunc && aFuncs[i].needCollSeq ){ pFunc->needCollSeq = 1; } } }#ifndef SQLITE_OMIT_ALTERTABLE sqlite3AlterFunctions(db);#endif for(i=0; i<sizeof(aAggs)/sizeof(aAggs[0]); i++){ void *pArg = 0; switch( aAggs[i].argType ){ case 1: pArg = db; break; case 2: pArg = (void *)(-1); break; } sqlite3_create_function(db, aAggs[i].zName, aAggs[i].nArg, SQLITE_UTF8, pArg, 0, aAggs[i].xStep, aAggs[i].xFinalize); if( aAggs[i].needCollSeq ){ FuncDef *pFunc = sqlite3FindFunction( db, aAggs[i].zName, strlen(aAggs[i].zName), aAggs[i].nArg, SQLITE_UTF8, 0); if( pFunc && aAggs[i].needCollSeq ){ pFunc->needCollSeq = 1; } } } sqlite3RegisterDateTimeFunctions(db);#ifdef SQLITE_SSE sqlite3SseFunctions(db);#endif#ifdef SQLITE_CASE_SENSITIVE_LIKE sqlite3RegisterLikeFunctions(db, 1);#else sqlite3RegisterLikeFunctions(db, 0);#endif}/*** Set the LIKEOPT flag on the 2-argument function with the given name.*/static void setLikeOptFlag(sqlite3 *db, const char *zName, int flagVal){ FuncDef *pDef; pDef = sqlite3FindFunction(db, zName, strlen(zName), 2, SQLITE_UTF8, 0); if( pDef ){ pDef->flags = flagVal; }}/*** Register the built-in LIKE and GLOB functions. The caseSensitive** parameter determines whether or not the LIKE operator is case** sensitive. GLOB is always case sensitive.*/void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){ struct compareInfo *pInfo; if( caseSensitive ){ pInfo = (struct compareInfo*)&likeInfoAlt; }else{ pInfo = (struct compareInfo*)&likeInfoNorm; } sqlite3_create_function(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0); sqlite3_create_function(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0); sqlite3_create_function(db, "glob", 2, SQLITE_UTF8, (struct compareInfo*)&globInfo, likeFunc, 0,0); setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE); setLikeOptFlag(db, "like", caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE);}/*** pExpr points to an expression which implements a function. If** it is appropriate to apply the LIKE optimization to that function** then set aWc[0] through aWc[2] to the wildcard characters and** return TRUE. If the function is not a LIKE-style function then** return FALSE.*/int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){ FuncDef *pDef; if( pExpr->op!=TK_FUNCTION ){ return 0; } if( pExpr->pList->nExpr!=2 ){ return 0; } pDef = sqlite3FindFunction(db, pExpr->token.z, pExpr->token.n, 2, SQLITE_UTF8, 0); if( pDef==0 || (pDef->flags & SQLITE_FUNC_LIKE)==0 ){ return 0; } /* The memcpy() statement assumes that the wildcard characters are ** the first three statements in the compareInfo structure. The ** asserts() that follow verify that assumption */ memcpy(aWc, pDef->pUserData, 3); assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll ); assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne ); assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet ); *pIsNocase = (pDef->flags & SQLITE_FUNC_CASE)==0; return 1;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -