⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 maxnormalizeiterative.html

📁 显著区域检测。求的图像中感兴趣区域的位置
💻 HTML
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"                "http://www.w3.org/TR/REC-html40/loose.dtd"><html><head>  <title>Description of maxNormalizeIterative</title>  <meta name="keywords" content="maxNormalizeIterative">  <meta name="description" content="maxNormalizeIterative - normalize data with the an iterative algorithm.">  <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">  <meta name="generator" content="m2html &copy; 2003 Guillaume Flandin">  <meta name="robots" content="index, follow">  <link type="text/css" rel="stylesheet" href="../m2html.css"></head><body><a name="_top"></a><div><a href="../index.html">Home</a> &gt;  <a href="#">mfiles</a> &gt; maxNormalizeIterative.m</div><!--<table width="100%"><tr><td align="left"><a href="../index.html"><img alt="<" border="0" src="../left.png">&nbsp;Master index</a></td><td align="right"><a href="index.html">Index for .\mfiles&nbsp;<img alt=">" border="0" src="../right.png"></a></td></tr></table>--><h1>maxNormalizeIterative</h1><h2><a name="_name"></a>PURPOSE <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="box"><strong>maxNormalizeIterative - normalize data with the an iterative algorithm.</strong></div><h2><a name="_synopsis"></a>SYNOPSIS <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="box"><strong>function result = maxNormalizeIterative(data,numIter,varargin) </strong></div><h2><a name="_description"></a>DESCRIPTION <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="fragment"><pre class="comment"> maxNormalizeIterative - normalize data with the an iterative algorithm. result = maxNormalizeIterative(data,numIter)    Normalize the data with the iterative     normalization algorithm described in:    L. Itti, C. Koch, A saliency-based search mechanism for overt     and covert shifts of visual attention, Vision Research,     Vol. 40, No. 10-12, pp. 1489-1506, May 2000.       data: a 2d input array       numIter: number of iterations       result: the normalized image result = maxNormalizeIterative(data,numIter,minmax)    Specify a dynamic range for the initial maximum     normalization of the input data (default: [0 10]).    The special value minmax = [0 0] means that initial    maximum normalization is omitted. See also <a href="maxNormalize.html" class="code" title="function result = maxNormalize(maps,params,varargin)">maxNormalize</a>, <a href="maxNormalizeLocalMax.html" class="code" title="function result = maxNormalizeLocalMax(data,varargin)">maxNormalizeLocalMax</a>, <a href="makeSaliencyMap.html" class="code" title="function [salmap, saliencyData] = makeSaliencyMap(img, salParams, varargin)">makeSaliencyMap</a>.</pre></div><!-- crossreference --><h2><a name="_cross"></a>CROSS-REFERENCE INFORMATION <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2>This function calls:<ul style="list-style-image:url(../matlabicon.gif)"><li><a href="clamp.html" class="code" title="function data = clamp(data,bottom,varargin)">clamp</a>	clamp - clamps data at the top and/or bottom.</li><li><a href="gaussian.html" class="code" title="function kernel = gaussian(peak,sigma,maxhw,varargin)">gaussian</a>	gaussian - returns a 1d Gaussian kernel.</li><li><a href="normalizeImage.html" class="code" title="function res = normalizeImage(img,varargin)">normalizeImage</a>	normalizeImage - linearly normalize an array.</li><li><a href="sepConv2PreserveEnergy.html" class="code" title="function result = sepConv2PreserveEnergy(filter1,filter2,data)">sepConv2PreserveEnergy</a>	sepConv2PreserveEnergy - energy preserving 2d convolution with separable filter</li></ul>This function is called by:<ul style="list-style-image:url(../matlabicon.gif)"><li><a href="maxNormalize.html" class="code" title="function result = maxNormalize(maps,params,varargin)">maxNormalize</a>	maxNormalize - normalizes a set of maps according to params.</li></ul><!-- crossreference --><h2><a name="_source"></a>SOURCE CODE <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="fragment"><pre>0001 <span class="comment">% maxNormalizeIterative - normalize data with the an iterative algorithm.</span>0002 <span class="comment">%</span>0003 <span class="comment">% result = maxNormalizeIterative(data,numIter)</span>0004 <span class="comment">%    Normalize the data with the iterative</span>0005 <span class="comment">%    normalization algorithm described in:</span>0006 <span class="comment">%    L. Itti, C. Koch, A saliency-based search mechanism for overt</span>0007 <span class="comment">%    and covert shifts of visual attention, Vision Research,</span>0008 <span class="comment">%    Vol. 40, No. 10-12, pp. 1489-1506, May 2000.</span>0009 <span class="comment">%       data: a 2d input array</span>0010 <span class="comment">%       numIter: number of iterations</span>0011 <span class="comment">%       result: the normalized image</span>0012 <span class="comment">%</span>0013 <span class="comment">% result = maxNormalizeIterative(data,numIter,minmax)</span>0014 <span class="comment">%    Specify a dynamic range for the initial maximum</span>0015 <span class="comment">%    normalization of the input data (default: [0 10]).</span>0016 <span class="comment">%    The special value minmax = [0 0] means that initial</span>0017 <span class="comment">%    maximum normalization is omitted.</span>0018 <span class="comment">%</span>0019 <span class="comment">% See also maxNormalize, maxNormalizeLocalMax, makeSaliencyMap.</span>0020 0021 <span class="comment">% This file is part of the SaliencyToolbox - Copyright (C) 2006-2007</span>0022 <span class="comment">% by Dirk B. Walther and the California Institute of Technology.</span>0023 <span class="comment">% See the enclosed LICENSE.TXT document for the license agreement.</span>0024 <span class="comment">% More information about this project is available at:</span>0025 <span class="comment">% http://www.saliencytoolbox.net</span>0026 0027 <a name="_sub0" href="#_subfunctions" class="code">function result = maxNormalizeIterative(data,numIter,varargin)</a>0028 0029 <span class="comment">% a few parameters for the convolution filters</span>0030 iterInhi = 2.0;0031 iterCoEx = 0.5;0032 iterCoIn = 1.5;0033 iterExSig = 2;0034 iterInSig = 25;0035 0036 <span class="keyword">if</span> (length(varargin) &gt;= 1) minmax = varargin{1}; 0037 <span class="keyword">else</span> minmax = [0 10]; <span class="keyword">end</span>0038   0039 result = <a href="normalizeImage.html" class="code" title="function res = normalizeImage(img,varargin)">normalizeImage</a>(<a href="clamp.html" class="code" title="function data = clamp(data,bottom,varargin)">clamp</a>(data,0),minmax);0040 0041 <span class="comment">% make 1d Gaussian kernels for excitation and inhibition</span>0042 sz = max(size(result));0043 maxhw = max(0,floor(min(size(result))/2) - 1);0044 esig = sz * iterExSig * 0.01;0045 isig = sz * iterInSig * 0.01;0046 gExc = <a href="gaussian.html" class="code" title="function kernel = gaussian(peak,sigma,maxhw,varargin)">gaussian</a>(iterCoEx/(esig*sqrt(2*pi)),esig,maxhw);0047 gInh = <a href="gaussian.html" class="code" title="function kernel = gaussian(peak,sigma,maxhw,varargin)">gaussian</a>(iterCoIn/(isig*sqrt(2*pi)),isig,maxhw);0048 0049 <span class="comment">% go through the normalization iterations</span>0050 <span class="keyword">for</span> iter = 1:numIter0051   0052   <span class="comment">% get the excitatory and inhibitory receptive fields</span>0053   excit = <a href="sepConv2PreserveEnergy.html" class="code" title="function result = sepConv2PreserveEnergy(filter1,filter2,data)">sepConv2PreserveEnergy</a>(gExc,gExc,result);0054   inhib = <a href="sepConv2PreserveEnergy.html" class="code" title="function result = sepConv2PreserveEnergy(filter1,filter2,data)">sepConv2PreserveEnergy</a>(gInh,gInh,result);0055   0056   <span class="comment">% global inhibition to prevent explosion of the map activity</span>0057   globinhi = 0.01 * iterInhi * max(result(:));0058   0059   <span class="comment">% putting all the terms together and clamping them</span>0060   result = <a href="clamp.html" class="code" title="function data = clamp(data,bottom,varargin)">clamp</a>((result + excit - inhib - globinhi), 0);0061 <span class="keyword">end</span></pre></div><hr><address>Generated on Fri 07-Sep-2007 14:42:18 by <strong><a href="http://www.artefact.tk/software/matlab/m2html/">m2html</a></strong> &copy; 2003</address></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -