📄 maxnormalizelocalmax.m
字号:
% maxNormalizeLocalMax - normalization based on local maxima.%% result = maxNormalizeLocalMax(data)% Normalize data by multiplying it with % (max(data) - avg(localMaxima))^2 as described in:% L. Itti, C. Koch, E. Niebur, A Model of Saliency-Based % Visual Attention for Rapid Scene Analysis, IEEE PAMI, % Vol. 20, No. 11, pp. 1254-1259, Nov 1998.%% result = maxNormalizeLocalMax(data,minmax)% Specify a dynamic range for the initial maximum % normalization of the input data (default: [0 10]).% The special value minmax = [0 0] means that initial% maximum normalization is omitted.%% See also maxNormalize, maxNormalizeIterative, makeSaliencyMap.% This file is part of the SaliencyToolbox - Copyright (C) 2006-2007% by Dirk B. Walther and the California Institute of Technology.% See the enclosed LICENSE.TXT document for the license agreement. % More information about this project is available at: % http://www.saliencytoolbox.netfunction result = maxNormalizeLocalMax(data,varargin)if (length(varargin) >= 1) minmax = varargin{1}; else minmax = [0 10]; enddata = normalizeImage(clamp(data,0),minmax);thresh = minmax(1) + (minmax(2) - minmax(1)) / 10;[lm_avg,lm_num,lm_sum] = mexLocalMaxima(data,thresh);if (lm_num > 1) result = data * (minmax(2) - lm_avg)^2;elseif (lm_num == 1) result = data * minmax(2)^2;else fatal('Could not find any local maxima.');end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -