📄 utf.c
字号:
/*** 2004 April 13**** The author disclaims copyright to this source code. In place of** a legal notice, here is a blessing:**** May you do good and not evil.** May you find forgiveness for yourself and forgive others.** May you share freely, never taking more than you give.***************************************************************************** This file contains routines used to translate between UTF-8, ** UTF-16, UTF-16BE, and UTF-16LE.**** $Id: utf.c,v 1.57 2007/09/01 11:04:27 danielk1977 Exp $**** Notes on UTF-8:**** Byte-0 Byte-1 Byte-2 Byte-3 Value** 0xxxxxxx 00000000 00000000 0xxxxxxx** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx****** Notes on UTF-16: (with wwww+1==uuuuu)**** Word-0 Word-1 Value** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx****** BOM or Byte Order Mark:** 0xff 0xfe little-endian utf-16 follows** 0xfe 0xff big-endian utf-16 follows***/#include "sqliteInt.h"#include <assert.h>#include "vdbeInt.h"/*** The following constant value is used by the SQLITE_BIGENDIAN and** SQLITE_LITTLEENDIAN macros.*/const int sqlite3one = 1;/*** This lookup table is used to help decode the first byte of** a multi-byte UTF8 character.*/static const unsigned char sqlite3UtfTrans1[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,};#define WRITE_UTF8(zOut, c) { \ if( c<0x00080 ){ \ *zOut++ = (c&0xFF); \ } \ else if( c<0x00800 ){ \ *zOut++ = 0xC0 + ((c>>6)&0x1F); \ *zOut++ = 0x80 + (c & 0x3F); \ } \ else if( c<0x10000 ){ \ *zOut++ = 0xE0 + ((c>>12)&0x0F); \ *zOut++ = 0x80 + ((c>>6) & 0x3F); \ *zOut++ = 0x80 + (c & 0x3F); \ }else{ \ *zOut++ = 0xF0 + ((c>>18) & 0x07); \ *zOut++ = 0x80 + ((c>>12) & 0x3F); \ *zOut++ = 0x80 + ((c>>6) & 0x3F); \ *zOut++ = 0x80 + (c & 0x3F); \ } \}#define WRITE_UTF16LE(zOut, c) { \ if( c<=0xFFFF ){ \ *zOut++ = (c&0x00FF); \ *zOut++ = ((c>>8)&0x00FF); \ }else{ \ *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \ *zOut++ = (c&0x00FF); \ *zOut++ = (0x00DC + ((c>>8)&0x03)); \ } \}#define WRITE_UTF16BE(zOut, c) { \ if( c<=0xFFFF ){ \ *zOut++ = ((c>>8)&0x00FF); \ *zOut++ = (c&0x00FF); \ }else{ \ *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \ *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ *zOut++ = (0x00DC + ((c>>8)&0x03)); \ *zOut++ = (c&0x00FF); \ } \}#define READ_UTF16LE(zIn, c){ \ c = (*zIn++); \ c += ((*zIn++)<<8); \ if( c>=0xD800 && c<0xE000 ){ \ int c2 = (*zIn++); \ c2 += ((*zIn++)<<8); \ c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \ if( (c & 0xFFFF0000)==0 ) c = 0xFFFD; \ } \}#define READ_UTF16BE(zIn, c){ \ c = ((*zIn++)<<8); \ c += (*zIn++); \ if( c>=0xD800 && c<0xE000 ){ \ int c2 = ((*zIn++)<<8); \ c2 += (*zIn++); \ c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \ if( (c & 0xFFFF0000)==0 ) c = 0xFFFD; \ } \}/*** Translate a single UTF-8 character. Return the unicode value.**** During translation, assume that the byte that zTerm points** is a 0x00.**** Write a pointer to the next unread byte back into *pzNext.**** Notes On Invalid UTF-8:**** * This routine never allows a 7-bit character (0x00 through 0x7f) to** be encoded as a multi-byte character. Any multi-byte character that** attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd.**** * This routine never allows a UTF16 surrogate value to be encoded.** If a multi-byte character attempts to encode a value between** 0xd800 and 0xe000 then it is rendered as 0xfffd.**** * Bytes in the range of 0x80 through 0xbf which occur as the first** byte of a character are interpreted as single-byte characters** and rendered as themselves even though they are technically** invalid characters.**** * This routine accepts an infinite number of different UTF8 encodings** for unicode values 0x80 and greater. It do not change over-length** encodings to 0xfffd as some systems recommend.*/int sqlite3Utf8Read( const unsigned char *z, /* First byte of UTF-8 character */ const unsigned char *zTerm, /* Pretend this byte is 0x00 */ const unsigned char **pzNext /* Write first byte past UTF-8 char here */){ int c = *(z++); if( c>=0xc0 ){ c = sqlite3UtfTrans1[c-0xc0]; while( z!=zTerm && (*z & 0xc0)==0x80 ){ c = (c<<6) + (0x3f & *(z++)); } if( c<0x80 || (c&0xFFFFF800)==0xD800 || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } } *pzNext = z; return c;}/*** If the TRANSLATE_TRACE macro is defined, the value of each Mem is** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().*/ /* #define TRANSLATE_TRACE 1 */#ifndef SQLITE_OMIT_UTF16/*** This routine transforms the internal text encoding used by pMem to** desiredEnc. It is an error if the string is already of the desired** encoding, or if *pMem does not contain a string value.*/int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){ unsigned char zShort[NBFS]; /* Temporary short output buffer */ int len; /* Maximum length of output string in bytes */ unsigned char *zOut; /* Output buffer */ unsigned char *zIn; /* Input iterator */ unsigned char *zTerm; /* End of input */ unsigned char *z; /* Output iterator */ unsigned int c; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( pMem->flags&MEM_Str ); assert( pMem->enc!=desiredEnc ); assert( pMem->enc!=0 ); assert( pMem->n>=0 );#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) { char zBuf[100]; sqlite3VdbeMemPrettyPrint(pMem, zBuf); fprintf(stderr, "INPUT: %s\n", zBuf); }#endif /* If the translation is between UTF-16 little and big endian, then ** all that is required is to swap the byte order. This case is handled ** differently from the others. */ if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){ u8 temp; int rc; rc = sqlite3VdbeMemMakeWriteable(pMem); if( rc!=SQLITE_OK ){ assert( rc==SQLITE_NOMEM ); return SQLITE_NOMEM; } zIn = (u8*)pMem->z; zTerm = &zIn[pMem->n]; while( zIn<zTerm ){ temp = *zIn; *zIn = *(zIn+1); zIn++; *zIn++ = temp; } pMem->enc = desiredEnc; goto translate_out; } /* Set len to the maximum number of bytes required in the output buffer. */ if( desiredEnc==SQLITE_UTF8 ){ /* When converting from UTF-16, the maximum growth results from ** translating a 2-byte character to a 4-byte UTF-8 character. ** A single byte is required for the output string ** nul-terminator. */ len = pMem->n * 2 + 1; }else{ /* When converting from UTF-8 to UTF-16 the maximum growth is caused ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16 ** character. Two bytes are required in the output buffer for the ** nul-terminator. */ len = pMem->n * 2 + 2; } /* Set zIn to point at the start of the input buffer and zTerm to point 1 ** byte past the end. ** ** Variable zOut is set to point at the output buffer. This may be space ** obtained from sqlite3_malloc(), or Mem.zShort, if it large enough and ** not in use, or the zShort array on the stack (see above). */ zIn = (u8*)pMem->z; zTerm = &zIn[pMem->n]; if( len>NBFS ){ zOut = sqlite3DbMallocRaw(pMem->db, len); if( !zOut ){ return SQLITE_NOMEM; } }else{ zOut = zShort; } z = zOut;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -