📄 sbr_qmf.c
字号:
/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
**
** $Id: sbr_qmf.c,v 1.27 2004/09/04 14:56:28 menno Exp $
**/
#include "common.h"
#include "structs.h"
#ifdef SBR_DEC
#include <stdlib.h>
#include <string.h>
#include "sbr_dct.h"
#include "sbr_qmf.h"
#include "sbr_qmf_c.h"
#include "sbr_syntax.h"
qmfa_info *qmfa_init(uint8_t channels)
{
qmfa_info *qmfa = (qmfa_info*)faad_malloc(sizeof(qmfa_info));
/* x is implemented as double ringbuffer */
qmfa->x = (real_t*)faad_malloc(2 * channels * 10 * sizeof(real_t));
memset(qmfa->x, 0, 2 * channels * 10 * sizeof(real_t));
/* ringbuffer index */
qmfa->x_index = 0;
qmfa->channels = channels;
return qmfa;
}
void qmfa_end(qmfa_info *qmfa)
{
if (qmfa)
{
if (qmfa->x) faad_free(qmfa->x);
faad_free(qmfa);
}
}
void sbr_qmf_analysis_32(sbr_info *sbr, qmfa_info *qmfa, const real_t *input,
qmf_t X[MAX_NTSRHFG][64], uint8_t offset, uint8_t kx)
{
ALIGN real_t u[64];
#ifndef SBR_LOW_POWER
ALIGN real_t in_real[32], in_imag[32], out_real[32], out_imag[32];
#else
ALIGN real_t y[32];
#endif
uint32_t in = 0;
uint8_t l;
/* qmf subsample l */
for (l = 0; l < sbr->numTimeSlotsRate; l++)
{
int16_t n;
/* shift input buffer x */
/* input buffer is not shifted anymore, x is implemented as double ringbuffer */
//memmove(qmfa->x + 32, qmfa->x, (320-32)*sizeof(real_t));
/* add new samples to input buffer x */
for (n = 32 - 1; n >= 0; n--)
{
#ifdef FIXED_POINT
qmfa->x[qmfa->x_index + n] = qmfa->x[qmfa->x_index + n + 320] = (input[in++]) >> 4;
#else
qmfa->x[qmfa->x_index + n] = qmfa->x[qmfa->x_index + n + 320] = input[in++];
#endif
}
/* window and summation to create array u */
for (n = 0; n < 64; n++)
{
u[n] = MUL_F(qmfa->x[qmfa->x_index + n], qmf_c[2*n]) +
MUL_F(qmfa->x[qmfa->x_index + n + 64], qmf_c[2*(n + 64)]) +
MUL_F(qmfa->x[qmfa->x_index + n + 128], qmf_c[2*(n + 128)]) +
MUL_F(qmfa->x[qmfa->x_index + n + 192], qmf_c[2*(n + 192)]) +
MUL_F(qmfa->x[qmfa->x_index + n + 256], qmf_c[2*(n + 256)]);
}
/* update ringbuffer index */
qmfa->x_index -= 32;
if (qmfa->x_index < 0)
qmfa->x_index = (320-32);
/* calculate 32 subband samples by introducing X */
#ifdef SBR_LOW_POWER
y[0] = u[48];
for (n = 1; n < 16; n++)
y[n] = u[n+48] + u[48-n];
for (n = 16; n < 32; n++)
y[n] = -u[n-16] + u[48-n];
DCT3_32_unscaled(u, y);
for (n = 0; n < 32; n++)
{
if (n < kx)
{
#ifdef FIXED_POINT
QMF_RE(X[l + offset][n]) = u[n] /*<< 1*/;
#else
QMF_RE(X[l + offset][n]) = 2. * u[n];
#endif
} else {
QMF_RE(X[l + offset][n]) = 0;
}
}
#else
// Reordering of data moved from DCT_IV to here
in_imag[31] = u[1];
in_real[0] = u[0];
for (n = 1; n < 31; n++)
{
in_imag[31 - n] = u[n+1];
in_real[n] = -u[64-n];
}
in_imag[0] = u[32];
in_real[31] = -u[33];
// dct4_kernel is DCT_IV without reordering which is done before and after FFT
dct4_kernel(in_real, in_imag, out_real, out_imag);
// Reordering of data moved from DCT_IV to here
for (n = 0; n < 16; n++) {
if (2*n+1 < kx) {
#ifdef FIXED_POINT
QMF_RE(X[l + offset][2*n]) = out_real[n];
QMF_IM(X[l + offset][2*n]) = out_imag[n];
QMF_RE(X[l + offset][2*n+1]) = -out_imag[31-n];
QMF_IM(X[l + offset][2*n+1]) = -out_real[31-n];
#else
QMF_RE(X[l + offset][2*n]) = 2. * out_real[n];
QMF_IM(X[l + offset][2*n]) = 2. * out_imag[n];
QMF_RE(X[l + offset][2*n+1]) = -2. * out_imag[31-n];
QMF_IM(X[l + offset][2*n+1]) = -2. * out_real[31-n];
#endif
} else {
if (2*n < kx) {
#ifdef FIXED_POINT
QMF_RE(X[l + offset][2*n]) = out_real[n];
QMF_IM(X[l + offset][2*n]) = out_imag[n];
#else
QMF_RE(X[l + offset][2*n]) = 2. * out_real[n];
QMF_IM(X[l + offset][2*n]) = 2. * out_imag[n];
#endif
}
else {
QMF_RE(X[l + offset][2*n]) = 0;
QMF_IM(X[l + offset][2*n]) = 0;
}
QMF_RE(X[l + offset][2*n+1]) = 0;
QMF_IM(X[l + offset][2*n+1]) = 0;
}
}
#endif
}
}
static const complex_t qmf32_pre_twiddle[] =
{
{ FRAC_CONST(0.999924701839145), FRAC_CONST(-0.012271538285720) },
{ FRAC_CONST(0.999322384588350), FRAC_CONST(-0.036807222941359) },
{ FRAC_CONST(0.998118112900149), FRAC_CONST(-0.061320736302209) },
{ FRAC_CONST(0.996312612182778), FRAC_CONST(-0.085797312344440) },
{ FRAC_CONST(0.993906970002356), FRAC_CONST(-0.110222207293883) },
{ FRAC_CONST(0.990902635427780), FRAC_CONST(-0.134580708507126) },
{ FRAC_CONST(0.987301418157858), FRAC_CONST(-0.158858143333861) },
{ FRAC_CONST(0.983105487431216), FRAC_CONST(-0.183039887955141) },
{ FRAC_CONST(0.978317370719628), FRAC_CONST(-0.207111376192219) },
{ FRAC_CONST(0.972939952205560), FRAC_CONST(-0.231058108280671) },
{ FRAC_CONST(0.966976471044852), FRAC_CONST(-0.254865659604515) },
{ FRAC_CONST(0.960430519415566), FRAC_CONST(-0.278519689385053) },
{ FRAC_CONST(0.953306040354194), FRAC_CONST(-0.302005949319228) },
{ FRAC_CONST(0.945607325380521), FRAC_CONST(-0.325310292162263) },
{ FRAC_CONST(0.937339011912575), FRAC_CONST(-0.348418680249435) },
{ FRAC_CONST(0.928506080473216), FRAC_CONST(-0.371317193951838) },
{ FRAC_CONST(0.919113851690058), FRAC_CONST(-0.393992040061048) },
{ FRAC_CONST(0.909167983090522), FRAC_CONST(-0.416429560097637) },
{ FRAC_CONST(0.898674465693954), FRAC_CONST(-0.438616238538528) },
{ FRAC_CONST(0.887639620402854), FRAC_CONST(-0.460538710958240) },
{ FRAC_CONST(0.876070094195407), FRAC_CONST(-0.482183772079123) },
{ FRAC_CONST(0.863972856121587), FRAC_CONST(-0.503538383725718) },
{ FRAC_CONST(0.851355193105265), FRAC_CONST(-0.524589682678469) },
{ FRAC_CONST(0.838224705554838), FRAC_CONST(-0.545324988422046) },
{ FRAC_CONST(0.824589302785025), FRAC_CONST(-0.565731810783613) },
{ FRAC_CONST(0.810457198252595), FRAC_CONST(-0.585797857456439) },
{ FRAC_CONST(0.795836904608884), FRAC_CONST(-0.605511041404326) },
{ FRAC_CONST(0.780737228572094), FRAC_CONST(-0.624859488142386) },
{ FRAC_CONST(0.765167265622459), FRAC_CONST(-0.643831542889791) },
{ FRAC_CONST(0.749136394523459), FRAC_CONST(-0.662415777590172) },
{ FRAC_CONST(0.732654271672413), FRAC_CONST(-0.680600997795453) },
{ FRAC_CONST(0.715730825283819), FRAC_CONST(-0.698376249408973) }
};
qmfs_info *qmfs_init(uint8_t channels)
{
qmfs_info *qmfs = (qmfs_info*)faad_malloc(sizeof(qmfs_info));
/* v is a double ringbuffer */
qmfs->v = (real_t*)faad_malloc(2 * channels * 20 * sizeof(real_t));
memset(qmfs->v, 0, 2 * channels * 20 * sizeof(real_t));
qmfs->v_index = 0;
qmfs->channels = channels;
return qmfs;
}
void qmfs_end(qmfs_info *qmfs)
{
if (qmfs)
{
if (qmfs->v) faad_free(qmfs->v);
faad_free(qmfs);
}
}
#ifdef SBR_LOW_POWER
void sbr_qmf_synthesis_32(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSRHFG][64],
real_t *output)
{
ALIGN real_t x[16];
ALIGN real_t y[16];
int32_t n, k, out = 0;
uint8_t l;
/* qmf subsample l */
for (l = 0; l < sbr->numTimeSlotsRate; l++)
{
/* shift buffers */
/* we are not shifting v, it is a double ringbuffer */
//memmove(qmfs->v + 64, qmfs->v, (640-64)*sizeof(real_t));
/* calculate 64 samples */
for (k = 0; k < 16; k++)
{
#ifdef FIXED_POINT
y[k] = (QMF_RE(X[l][k]) - QMF_RE(X[l][31 - k]));
x[k] = (QMF_RE(X[l][k]) + QMF_RE(X[l][31 - k]));
#else
y[k] = (QMF_RE(X[l][k]) - QMF_RE(X[l][31 - k])) / 32.0;
x[k] = (QMF_RE(X[l][k]) + QMF_RE(X[l][31 - k])) / 32.0;
#endif
}
/* even n samples */
DCT2_16_unscaled(x, x);
/* odd n samples */
DCT4_16(y, y);
for (n = 8; n < 24; n++)
{
qmfs->v[qmfs->v_index + n*2] = qmfs->v[qmfs->v_index + 640 + n*2] = x[n-8];
qmfs->v[qmfs->v_index + n*2+1] = qmfs->v[qmfs->v_index + 640 + n*2+1] = y[n-8];
}
for (n = 0; n < 16; n++)
{
qmfs->v[qmfs->v_index + n] = qmfs->v[qmfs->v_index + 640 + n] = qmfs->v[qmfs->v_index + 32-n];
}
qmfs->v[qmfs->v_index + 48] = qmfs->v[qmfs->v_index + 640 + 48] = 0;
for (n = 1; n < 16; n++)
{
qmfs->v[qmfs->v_index + 48+n] = qmfs->v[qmfs->v_index + 640 + 48+n] = -qmfs->v[qmfs->v_index + 48-n];
}
/* calculate 32 output samples and window */
for (k = 0; k < 32; k++)
{
output[out++] = MUL_F(qmfs->v[qmfs->v_index + k], qmf_c[2*k]) +
MUL_F(qmfs->v[qmfs->v_index + 96 + k], qmf_c[64 + 2*k]) +
MUL_F(qmfs->v[qmfs->v_index + 128 + k], qmf_c[128 + 2*k]) +
MUL_F(qmfs->v[qmfs->v_index + 224 + k], qmf_c[192 + 2*k]) +
MUL_F(qmfs->v[qmfs->v_index + 256 + k], qmf_c[256 + 2*k]) +
MUL_F(qmfs->v[qmfs->v_index + 352 + k], qmf_c[320 + 2*k]) +
MUL_F(qmfs->v[qmfs->v_index + 384 + k], qmf_c[384 + 2*k]) +
MUL_F(qmfs->v[qmfs->v_index + 480 + k], qmf_c[448 + 2*k]) +
MUL_F(qmfs->v[qmfs->v_index + 512 + k], qmf_c[512 + 2*k]) +
MUL_F(qmfs->v[qmfs->v_index + 608 + k], qmf_c[576 + 2*k]);
}
/* update the ringbuffer index */
qmfs->v_index -= 64;
if (qmfs->v_index < 0)
qmfs->v_index = (640-64);
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -