📄 svm_struct_main.c
字号:
/***********************************************************************/
/* */
/* svm_struct_main.c */
/* */
/* Command line interface to the alignment learning module of the */
/* Support Vector Machine. */
/* */
/* Author: Thorsten Joachims */
/* Date: 03.07.04 */
/* */
/* Copyright (c) 2004 Thorsten Joachims - All rights reserved */
/* */
/* This software is available for non-commercial use only. It must */
/* not be modified and distributed without prior permission of the */
/* author. The author is not responsible for implications from the */
/* use of this software. */
/* */
/***********************************************************************/
/* uncomment, if you want to use svm-learn out of C++ */
/* extern "C" { */
# include "../svm_light/svm_common.h"
# include "../svm_light/svm_learn.h"
# include "svm_struct_learn.h"
# include "svm_struct_common.h"
# include "../svm_struct_api.h"
#include <stdio.h>
#include <string.h>
#include <assert.h>
/* } */
char trainfile[200]; /* file with training examples */
char modelfile[200]; /* file for resulting classifier */
void read_input_parameters(int, char **, char *, char *,long *, long *,
STRUCT_LEARN_PARM *, LEARN_PARM *, KERNEL_PARM *);
void wait_any_key();
void print_help();
int main (int argc, char* argv[])
{
SAMPLE sample; /* training sample */
LEARN_PARM learn_parm;
KERNEL_PARM kernel_parm;
STRUCT_LEARN_PARM struct_parm;
STRUCTMODEL structmodel;
read_input_parameters(argc,argv,trainfile,modelfile,&verbosity,
&struct_verbosity,&struct_parm,&learn_parm,
&kernel_parm);
if(struct_verbosity>=1) {
printf("Reading training examples..."); fflush(stdout);
}
/* read the training examples */
sample=read_struct_examples(trainfile,&struct_parm);
if(struct_verbosity>=1) {
printf("done\n"); fflush(stdout);
}
/* Do the learning and return structmodel. */
svm_learn_struct(sample,&struct_parm,&learn_parm,&kernel_parm,&structmodel);
/* Warning: The model contains references to the original data 'docs'.
If you want to free the original data, and only keep the model, you
have to make a deep copy of 'model'. */
if(struct_verbosity>=1) {
printf("Writing learned model...");fflush(stdout);
}
write_struct_model(modelfile,&structmodel,&struct_parm);
if(struct_verbosity>=1) {
printf("done\n");fflush(stdout);
}
free_struct_sample(sample);
free_struct_model(structmodel);
return 0;
}
/*---------------------------------------------------------------------------*/
void read_input_parameters(int argc,char *argv[],char *trainfile,
char *modelfile,
long *verbosity,long *struct_verbosity,
STRUCT_LEARN_PARM *struct_parm,
LEARN_PARM *learn_parm, KERNEL_PARM *kernel_parm)
{
long i;
char type[100];
/* set default */
/* these defaults correspond to the experiments in the paper*/
struct_parm->C=0.01;
struct_parm->slack_norm=1;
struct_parm->epsilon=0.01;
struct_parm->custom_argc=0;
struct_parm->loss_function=0;
struct_parm->loss_type=SLACK_RESCALING;
struct_parm->newconstretrain=100;
strcpy (modelfile, "svm_struct_model");
strcpy (learn_parm->predfile, "trans_predictions");
strcpy (learn_parm->alphafile, "");
(*verbosity)=0;/*verbosity for svm_light*/
(*struct_verbosity)=1; /*verbosity for struct learning portion*/
learn_parm->biased_hyperplane=1;
learn_parm->remove_inconsistent=0;
learn_parm->skip_final_opt_check=0;
learn_parm->svm_maxqpsize=10;
learn_parm->svm_newvarsinqp=0;
learn_parm->svm_iter_to_shrink=-9999;
learn_parm->maxiter=100000;
learn_parm->kernel_cache_size=40;
learn_parm->svm_c=99999999; /* everridden by struct_parm->C */
learn_parm->eps=0.01;
learn_parm->transduction_posratio=-1.0;
learn_parm->svm_costratio=1.0;
learn_parm->svm_costratio_unlab=1.0;
learn_parm->svm_unlabbound=1E-5;
learn_parm->epsilon_crit=0.001;
learn_parm->epsilon_a=1E-10; /* changed from 1e-15 */
learn_parm->compute_loo=0;
learn_parm->rho=1.0;
learn_parm->xa_depth=0;
kernel_parm->kernel_type=0;
kernel_parm->poly_degree=3;
kernel_parm->rbf_gamma=1.0;
kernel_parm->coef_lin=1;
kernel_parm->coef_const=1;
strcpy(kernel_parm->custom,"empty");
strcpy(type,"c");
for(i=1;(i<argc) && ((argv[i])[0] == '-');i++) {
switch ((argv[i])[1])
{
case '?': print_help(); exit(0);
case 'a': i++; strcpy(learn_parm->alphafile,argv[i]); break;
case 'c': i++; struct_parm->C=atof(argv[i]); break;
case 'p': i++; struct_parm->slack_norm=atof(argv[i]); break;
case 'e': i++; struct_parm->epsilon=atof(argv[i]); break;
case 'k': i++; struct_parm->newconstretrain=atol(argv[i]); break;
case 'h': i++; learn_parm->svm_iter_to_shrink=atol(argv[i]); break;
case '#': i++; learn_parm->maxiter=atol(argv[i]); break;
case 'm': i++; learn_parm->kernel_cache_size=atol(argv[i]); break;
case 'o': i++; struct_parm->loss_type=atol(argv[i]); break;
case 'n': i++; learn_parm->svm_newvarsinqp=atol(argv[i]); break;
case 'q': i++; learn_parm->svm_maxqpsize=atol(argv[i]); break;
case 'l': i++; struct_parm->loss_function=atol(argv[i]); break;
case 't': i++; kernel_parm->kernel_type=atol(argv[i]); break;
case 'd': i++; kernel_parm->poly_degree=atol(argv[i]); break;
case 'g': i++; kernel_parm->rbf_gamma=atof(argv[i]); break;
case 's': i++; kernel_parm->coef_lin=atof(argv[i]); break;
case 'r': i++; kernel_parm->coef_const=atof(argv[i]); break;
case 'u': i++; strcpy(kernel_parm->custom,argv[i]); break;
case '-': strcpy(struct_parm->custom_argv[struct_parm->custom_argc++],argv[i]);i++; strcpy(struct_parm->custom_argv[struct_parm->custom_argc++],argv[i]);break;
case 'v': i++; (*struct_verbosity)=atol(argv[i]); break;
case 'y': i++; (*verbosity)=atol(argv[i]); break;
default: printf("\nUnrecognized option %s!\n\n",argv[i]);
print_help();
exit(0);
}
}
if(i>=argc) {
printf("\nNot enough input parameters!\n\n");
wait_any_key();
print_help();
exit(0);
}
strcpy (trainfile, argv[i]);
if((i+1)<argc) {
strcpy (modelfile, argv[i+1]);
}
if(learn_parm->svm_iter_to_shrink == -9999) {
if(kernel_parm->kernel_type == LINEAR)
learn_parm->svm_iter_to_shrink=2;
else
learn_parm->svm_iter_to_shrink=100;
}
if((learn_parm->skip_final_opt_check)
&& (kernel_parm->kernel_type == LINEAR)) {
printf("\nIt does not make sense to skip the final optimality check for linear kernels.\n\n");
learn_parm->skip_final_opt_check=0;
}
if((learn_parm->skip_final_opt_check)
&& (learn_parm->remove_inconsistent)) {
printf("\nIt is necessary to do the final optimality check when removing inconsistent \nexamples.\n");
wait_any_key();
print_help();
exit(0);
}
if((learn_parm->svm_maxqpsize<2)) {
printf("\nMaximum size of QP-subproblems not in valid range: %ld [2..]\n",learn_parm->svm_maxqpsize);
wait_any_key();
print_help();
exit(0);
}
if((learn_parm->svm_maxqpsize<learn_parm->svm_newvarsinqp)) {
printf("\nMaximum size of QP-subproblems [%ld] must be larger than the number of\n",learn_parm->svm_maxqpsize);
printf("new variables [%ld] entering the working set in each iteration.\n",learn_parm->svm_newvarsinqp);
wait_any_key();
print_help();
exit(0);
}
if(learn_parm->svm_iter_to_shrink<1) {
printf("\nMaximum number of iterations for shrinking not in valid range: %ld [1,..]\n",learn_parm->svm_iter_to_shrink);
wait_any_key();
print_help();
exit(0);
}
if(learn_parm->svm_c<0) {
printf("\nThe C parameter must be greater than zero!\n\n");
wait_any_key();
print_help();
exit(0);
}
if(learn_parm->transduction_posratio>1) {
printf("\nThe fraction of unlabeled examples to classify as positives must\n");
printf("be less than 1.0 !!!\n\n");
wait_any_key();
print_help();
exit(0);
}
if(learn_parm->svm_costratio<=0) {
printf("\nThe COSTRATIO parameter must be greater than zero!\n\n");
wait_any_key();
print_help();
exit(0);
}
if(struct_parm->epsilon<=0) {
printf("\nThe epsilon parameter must be greater than zero!\n\n");
wait_any_key();
print_help();
exit(0);
}
if((struct_parm->slack_norm<1) || (struct_parm->slack_norm>2)) {
printf("\nThe norm of the slacks must be either 1 (L1-norm) or 2 (L2-norm)!\n\n");
wait_any_key();
print_help();
exit(0);
}
if((struct_parm->loss_type != SLACK_RESCALING)
&& (struct_parm->loss_type != MARGIN_RESCALING)) {
printf("\nThe loss type must be either 1 (slack rescaling) or 2 (margin rescaling)!\n\n");
wait_any_key();
print_help();
exit(0);
}
if(learn_parm->rho<0) {
printf("\nThe parameter rho for xi/alpha-estimates and leave-one-out pruning must\n");
printf("be greater than zero (typically 1.0 or 2.0, see T. Joachims, Estimating the\n");
printf("Generalization Performance of an SVM Efficiently, ICML, 2000.)!\n\n");
wait_any_key();
print_help();
exit(0);
}
if((learn_parm->xa_depth<0) || (learn_parm->xa_depth>100)) {
printf("\nThe parameter depth for ext. xi/alpha-estimates must be in [0..100] (zero\n");
printf("for switching to the conventional xa/estimates described in T. Joachims,\n");
printf("Estimating the Generalization Performance of an SVM Efficiently, ICML, 2000.)\n");
wait_any_key();
print_help();
exit(0);
}
parse_struct_parameters(struct_parm);
}
void wait_any_key()
{
printf("\n(more)\n");
(void)getc(stdin);
}
void print_help()
{
printf("\nSVM-struct learning module: %s, %s, %s\n",INST_NAME,INST_VERSION,INST_VERSION_DATE);
printf(" includes SVM-struct %s for learning complex outputs, %s\n",STRUCT_VERSION,STRUCT_VERSION_DATE);
printf(" includes SVM-light %s quadratic optimizer, %s\n",VERSION,VERSION_DATE);
copyright_notice();
printf(" usage: svm_struct_learn [options] example_file model_file\n\n");
printf("Arguments:\n");
printf(" example_file-> file with training data\n");
printf(" model_file -> file to store learned decision rule in\n");
printf("General options:\n");
printf(" -? -> this help\n");
printf(" -v [0..3] -> verbosity level (default 1)\n");
printf(" -y [0..3] -> verbosity level for svm_light (default 0)\n");
printf("Learning options:\n");
printf(" -c float -> C: trade-off between training error\n");
printf(" and margin (default 0.01)\n");
printf(" -p [1,2] -> L-norm to use for slack variables. Use 1 for L1-norm,\n");
printf(" use 2 for squared slacks. (default 1)\n");
printf(" -o [1,2] -> Slack rescaling method to use for loss.\n");
printf(" 1: slack rescaling\n");
printf(" 2: margin rescaling\n");
printf(" (default 1)\n");
printf(" -l [0..] -> Loss function to use.\n");
printf(" 0: zero/one loss\n");
printf(" (default 0)\n");
printf("Kernel options:\n");
printf(" -t int -> type of kernel function:\n");
printf(" 0: linear (default)\n");
printf(" 1: polynomial (s a*b+c)^d\n");
printf(" 2: radial basis function exp(-gamma ||a-b||^2)\n");
printf(" 3: sigmoid tanh(s a*b + c)\n");
printf(" 4: user defined kernel from kernel.h\n");
printf(" -d int -> parameter d in polynomial kernel\n");
printf(" -g float -> parameter gamma in rbf kernel\n");
printf(" -s float -> parameter s in sigmoid/poly kernel\n");
printf(" -r float -> parameter c in sigmoid/poly kernel\n");
printf(" -u string -> parameter of user defined kernel\n");
printf("Optimization options (see [2][3]):\n");
printf(" -q [2..] -> maximum size of QP-subproblems (default 10)\n");
printf(" -n [2..q] -> number of new variables entering the working set\n");
printf(" in each iteration (default n = q). Set n<q to prevent\n");
printf(" zig-zagging.\n");
printf(" -m [5..] -> size of cache for kernel evaluations in MB (default 40)\n");
printf(" The larger the faster...\n");
printf(" -e float -> eps: Allow that error for termination criterion\n");
printf(" (default 0.01)\n");
printf(" -h [5..] -> number of iterations a variable needs to be\n");
printf(" optimal before considered for shrinking (default 100)\n");
printf(" -k [1..] -> number of new constraints to accumulate before\n");
printf(" recomputing the QP solution (default 100)\n");
printf(" -# int -> terminate optimization, if no progress after this\n");
printf(" number of iterations. (default 100000)\n");
printf("Output options:\n");
printf(" -a string -> write all alphas to this file after learning\n");
printf(" (in the same order as in the training set)\n");
printf("Structure learning options:\n");
print_struct_help();
wait_any_key();
printf("\nMore details in:\n");
printf("[1] T. Joachims, Learning to Align Sequences: A Maximum Margin Aproach.\n");
printf(" Technical Report, September, 2003.\n");
printf("[2] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, Support Vector \n");
printf(" Learning for Interdependent and Structured Output Spaces, ICML, 2004.\n");
printf("[3] T. Joachims, Making Large-Scale SVM Learning Practical. Advances in\n");
printf(" Kernel Methods - Support Vector Learning, B. Sch鰈kopf and C. Burges and\n");
printf(" A. Smola (ed.), MIT Press, 1999.\n");
printf("[4] T. Joachims, Learning to Classify Text Using Support Vector\n");
printf(" Machines: Methods, Theory, and Algorithms. Dissertation, Kluwer,\n");
printf(" 2002.\n\n");
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -