⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pixbuf-transform-math.ltx

📁 linux下电话本所依赖的一些图形库
💻 LTX
字号:
\documentclass{article}\begin{document}\title{Some image transform math}\author{Owen Taylor}\date{18 February 2003}\maketitle\section{Basics}The transform process is composed of three steps;first we reconstruct a continuous image from the source data \(A_{i,j}\):\[a(u,v) = \sum_{i = -\infty}^{\infty} \sum_{j = -\infty}^{\infty} A_{i,j}F\left( {u - i \atop v - j} \right) \]Then we transform from destination coordinates to source coordinates:\[b(x,y) = a\left(u(x,y) \atop v(x,y)\right)         = a\left(t_{00}x + t_{01}y + t_{02} \atop t_{10}x + t_{11}y + t_{12} \right)\]Finally, we resample using a sampling function \(G\):\[B_{x_0,y_0} = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} b(x,y)G\left( {x - x_0 \atop y - y_0} \right) dxdy\]Putting all of these together:\[B_{x_0,y_0} = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\sum_{i = -\infty}^{\infty} \sum_{j = -\infty}^{\infty} A_{i,j}F\left( {u(x,y) - i \atop v(x,y) - j} \right)G\left( {x - x_0 \atop y - y_0} \right) dxdy\]We can reverse the order of the integrals and the sums:\[B_{x_0,y_0} = \sum_{i = -\infty}^{\infty} \sum_{j = -\infty}^{\infty} A_{i,j}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}F\left( {u(x,y) - i \atop v(x,y) - j} \right)G\left( {x - x_0 \atop y - y_0} \right) dxdy\]Which shows that the destination pixel values are a linear combination of the source pixel values. But the coefficents depend on \(x_0\) and \(y_0\). To simplify this a bit, define:\[i_0 = \lfloor u(x_0,y_0) \rfloor = \lfloor {t_{00}x_0 + t_{01}y_0 + t_{02}} \rfloor \]\[j_0 = \lfloor v(x_0,y_0) \rfloor = \lfloor {t_{10}x_0 + t_{11}y_0 + t_{12}} \rfloor \]\[\Delta_u = u(x_0,y_0) - i_0 = t_{00}x_0 + t_{01}y_0 + t_{02} - \lfloor {t_{00}x_0 + t_{01}y_0 + t_{02}} \rfloor \]\[\Delta_v = v(x_0,y_0) - j_0 = t_{10}x_0 + t_{11}y_0 + t_{12} - \lfloor {t_{10}x_0 + t_{11}y_0 + t_{12}} \rfloor \]Then making the transforms \(x' = x - x_0\), \(y' = y - x_0\), \(i' = i - i_0\), \(j' = j - x_0\)\begin{eqnarray*}F(u,v) & = & F\left( {t_{00}x + t_{01}y + t_{02} - i \atop t_{10}x + t_{11}y + t_{12} - j} \right)\\       & = & F\left( {t_{00}(x'+x_0) + t_{01}(y'+y_0) + t_{02} - (i'+i_0) \atop                       t_{10}(x'+x_0) + t_{11}(y'+y_0) + t_{12} - (j'+j_0)} \right) \\       & = & F\left( {\Delta_u + t_{00}x' + t_{01}y' - i' \atop                       \Delta_v + t_{10}x' + t_{11}y' - j'} \right)\end{eqnarray*}Using that, we can then reparameterize the sums and integrals anddefine coefficients that depend only on \((\Delta_u,\Delta_v)\),which we'll call the \emph{phase} at the point \((x_0,y_0)\):\[B_{x_0,y_0} = \sum_{i = -\infty}^{\infty} \sum_{j = -\infty}^{\infty} A_{i_0+i,j_0+j} C_{i,j}(\Delta_u,\Delta_v)\]\[C_{i,j}(\Delta_u,\Delta_v) =\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}F\left( {\Delta_u + t_{00}x + t_{01}y - i \atop          \Delta_v + t_{10}x + t_{11}y - j} \right)G\left( {x \atop y} \right) dxdy\]\section{Separability}A frequent special case is when the reconstruction and sampling functionsare of the form:\[F(u,v) = f(u)f(v)\]\[G(x,y) = g(x)g(y)\]If we also have a transform that is purely a scale and translation;(\(t_{10} = 0\), \(t_{01} = 0\)), then we can separate \(C_{i,j}(\Delta_u,\Delta_v)\) into the product of a \(x\) portionand a \(y\) portion:\[C_{i,j}(\Delta_u,\Delta_v) = c_{i}(\Delta_u) c_{j}(\Delta_v)\]\[c_{i}(\Delta_u) = \int_{-\infty}^{\infty} f(\Delta_u + t_{00}x - i)g(x)dx\]\[c_{j}(\Delta_v) = \int_{-\infty}^{\infty} f(\Delta_v + t_{11}y - j)g(y)dy\]\section{Some filters}gdk-pixbuf provides 4 standard filters for scaling, under the names ``NEAREST'',``TILES'', ``BILINEAR'', and ``HYPER''. All of turn out to be separableas discussed in the previous section. For ``NEAREST'' filter, the reconstruction function is simple replicationand the sampling function is a delta function\footnote{A delta function is an infinitely narrow spike, such that:\[\int_{-\infty}^{\infty}\delta(x)f(x) = f(0)\]}:\[f(t) = \cases{1, & if \(0 \le t \le 1\); \cr                 0, & otherwise}\]\[g(t) = \delta(t - 0.5)\]For ``TILES'', the reconstruction function is again replication, but wereplace the delta-function for sampling with a box filter:\[f(t) = \cases{1, & if \(0 \le t \le 1\); \cr                 0, & otherwise}\]\[g(t) = \cases{1, & if \(0 \le t \le 1\); \cr                 0, & otherwise}\]The ``HYPER'' filter (in practice, it was originally intended to be something else) uses bilinear interpolation for reconstruction anda box filter for sampling:\[f(t) = \cases{1 - |t - 0.5|, & if \(-0.5 \le t \le 1.5\); \cr                 0, & otherwise}\]\[g(t) = \cases{1, & if \(0 \le t \le 1\); \cr                 0, & otherwise}\]The ``BILINEAR'' filter is defined in a somewhat more complicated way;the definition depends on the scale factor in the transform (\(t_{00}\)or \(t_{01}]\). In the \(x\) direction, for \(t_{00} < 1\), it isthe same as for ``TILES'':\[f_u(t) = \cases{1, & if \(0 \le t \le 1\); \cr                   0, & otherwise}\]\[g_u(t) = \cases{1, & if \(0 \le t \le 1\); \cr                   0, & otherwise}\]but for \(t_{10} > 1\), we use bilinear reconstruction and delta-functionsampling:\[f_u(t) = \cases{1 - |t - 0.5|, & if \(-0.5 \le t \le 1.5\); \cr                   0, & otherwise}\]\[g_u(t) = \delta(t - 0.5)\]The behavior in the \(y\) direction depends in the same way on \(t_{11}\).\end{document}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -