📄 ufc.c
字号:
#ifdef _UFC_32_ inx = ((j1 << 6) | j2) << 1; sb[sg][inx ] = eperm32tab[0][(to_permute >> 24) & 0xff][0]; sb[sg][inx+1] = eperm32tab[0][(to_permute >> 24) & 0xff][1]; sb[sg][inx ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0]; sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1]; sb[sg][inx ] |= eperm32tab[2][(to_permute >> 8) & 0xff][0]; sb[sg][inx+1] |= eperm32tab[2][(to_permute >> 8) & 0xff][1]; sb[sg][inx ] |= eperm32tab[3][(to_permute) & 0xff][0]; sb[sg][inx+1] |= eperm32tab[3][(to_permute) & 0xff][1];#endif#ifdef _UFC_64_ inx = ((j1 << 6) | j2); sb[sg][inx] = ((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) | (long64)eperm32tab[0][(to_permute >> 24) & 0xff][1]; sb[sg][inx] |= ((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) | (long64)eperm32tab[1][(to_permute >> 16) & 0xff][1]; sb[sg][inx] |= ((long64)eperm32tab[2][(to_permute >> 8) & 0xff][0] << 32) | (long64)eperm32tab[2][(to_permute >> 8) & 0xff][1]; sb[sg][inx] |= ((long64)eperm32tab[3][(to_permute) & 0xff][0] << 32) | (long64)eperm32tab[3][(to_permute) & 0xff][1];#endif } } } /* * Create an inverse matrix for esel telling * where to plug out bits if undoing it */ for(bit=48; bit--;) { e_inverse[esel[bit] - 1 ] = bit; e_inverse[esel[bit] - 1 + 32] = bit + 48; } /* * create efp: the matrix used to * undo the E expansion and effect final permutation */ clearmem((char*)efp, sizeof efp); for(bit = 0; bit < 64; bit++) { int o_bit, o_long; ufc_long word_value, inner_mask1, inner_mask2; int comes_from_f_bit, comes_from_e_bit; int comes_from_word, bit_within_word; /* See where bit i belongs in the two 32 bit long's */ o_long = bit / 32; /* 0..1 */ o_bit = bit % 32; /* 0..31 */ /* * And find a bit in the e permutated value setting this bit. * * Note: the e selection may have selected the same bit several * times. By the initialization of e_inverse, we only look * for one specific instance. */ comes_from_f_bit = final_perm[bit] - 1; /* 0..63 */ comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */ comes_from_word = comes_from_e_bit / 6; /* 0..15 */ bit_within_word = comes_from_e_bit % 6; /* 0..5 */ inner_mask1 = longmask[bit_within_word + 26]; inner_mask2 = longmask[o_bit]; for(word_value = 64; word_value--;) { if(word_value & inner_mask1) efp[comes_from_word][word_value][o_long] |= inner_mask2; } } initialized++; }/* * Process the elements of the sb table permuting the * bits swapped in the expansion by the current salt. */#ifdef _UFC_32_static void shuffle_sb(long32 *k, ufc_long saltbits) { ufc_long j; long32 x; for(j=4096; j--;) { x = (k[0] ^ k[1]) & (long32)saltbits; *k++ ^= x; *k++ ^= x; } }#endif#ifdef _UFC_64_static void shuffle_sb(long64 *k, ufc_long saltbits) { ufc_long j; long64 x; for(j=4096; j--;) { x = ((*k >> 32) ^ *k) & (long64)saltbits; *k++ ^= (x << 32) | x; } }#endif/* * Setup the unit for a new salt * Hopefully we'll not see a new salt in each crypt call. */static unsigned char current_salt[3] = "&&"; /* invalid value */static ufc_long current_saltbits = 0;static int direction = 0;static void setup_salt(const char *s1) { ufc_long i, j, saltbits; const unsigned char *s2 = (const unsigned char *)s1; if(!initialized) ufc_init_des(); if(s2[0] == current_salt[0] && s2[1] == current_salt[1]) return; current_salt[0] = s2[0]; current_salt[1] = s2[1]; /* * This is the only crypt change to DES: * entries are swapped in the expansion table * according to the bits set in the salt. */ saltbits = 0; for(i = 0; i < 2; i++) { long c=ascii_to_bin(s2[i]); if(c < 0 || c > 63) c = 0; for(j = 0; j < 6; j++) { if((c >> j) & 0x1) saltbits |= BITMASK(6 * i + j); } } /* * Permute the sb table values * to reflect the changed e * selection table */ shuffle_sb(_ufc_sb0, current_saltbits ^ saltbits); shuffle_sb(_ufc_sb1, current_saltbits ^ saltbits); shuffle_sb(_ufc_sb2, current_saltbits ^ saltbits); shuffle_sb(_ufc_sb3, current_saltbits ^ saltbits); current_saltbits = saltbits; }static void ufc_mk_keytab(char *key) { ufc_long v1, v2, *k1; int i;#ifdef _UFC_32_ long32 v, *k2 = &_ufc_keytab[0][0];#endif#ifdef _UFC_64_ long64 v, *k2 = &_ufc_keytab[0];#endif v1 = v2 = 0; k1 = &do_pc1[0][0][0]; for(i = 8; i--;) { v1 |= k1[*key & 0x7f]; k1 += 128; v2 |= k1[*key++ & 0x7f]; k1 += 128; } for(i = 0; i < 16; i++) { k1 = &do_pc2[0][0]; v1 = (v1 << rots[i]) | (v1 >> (28 - rots[i])); v = k1[(v1 >> 21) & 0x7f]; k1 += 128; v |= k1[(v1 >> 14) & 0x7f]; k1 += 128; v |= k1[(v1 >> 7) & 0x7f]; k1 += 128; v |= k1[(v1 ) & 0x7f]; k1 += 128;#ifdef _UFC_32_ *k2++ = v; v = 0;#endif#ifdef _UFC_64_ v <<= 32;#endif v2 = (v2 << rots[i]) | (v2 >> (28 - rots[i])); v |= k1[(v2 >> 21) & 0x7f]; k1 += 128; v |= k1[(v2 >> 14) & 0x7f]; k1 += 128; v |= k1[(v2 >> 7) & 0x7f]; k1 += 128; v |= k1[(v2 ) & 0x7f]; *k2++ = v; } direction = 0; }/* * Undo an extra E selection and do final permutations */ufc_long *_ufc_dofinalperm(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2) { ufc_long v1, v2, x; static ufc_long ary[2]; x = (l1 ^ l2) & current_saltbits; l1 ^= x; l2 ^= x; x = (r1 ^ r2) & current_saltbits; r1 ^= x; r2 ^= x; v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3; v1 |= efp[15][ r2 & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1]; v1 |= efp[14][(r2 >>= 6) & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1]; v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1]; v1 |= efp[12][(r2 >>= 6) & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1]; v1 |= efp[11][ r1 & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1]; v1 |= efp[10][(r1 >>= 6) & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1]; v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1]; v1 |= efp[ 8][(r1 >>= 6) & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1]; v1 |= efp[ 7][ l2 & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1]; v1 |= efp[ 6][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1]; v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1]; v1 |= efp[ 4][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1]; v1 |= efp[ 3][ l1 & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1]; v1 |= efp[ 2][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1]; v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1]; v1 |= efp[ 0][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1]; ary[0] = v1; ary[1] = v2; return ary; }/* * crypt only: convert from 64 bit to 11 bit ASCII * prefixing with the salt */static char *output_conversion(ufc_long v1, ufc_long v2, const char *salt) { static char outbuf[14]; int i, s; outbuf[0] = salt[0]; outbuf[1] = salt[1] ? salt[1] : salt[0]; for(i = 0; i < 5; i++) outbuf[i + 2] = bin_to_ascii((v1 >> (26 - 6 * i)) & 0x3f); s = (v2 & 0xf) << 2; v2 = (v2 >> 2) | ((v1 & 0x3) << 30); for(i = 5; i < 10; i++) outbuf[i + 2] = bin_to_ascii((v2 >> (56 - 6 * i)) & 0x3f); outbuf[12] = bin_to_ascii(s); outbuf[13] = 0; return outbuf; }/* * UNIX crypt function */static ufc_long *_ufc_doit(ufc_long , ufc_long, ufc_long, ufc_long, ufc_long); char *ufc_crypt(const char *key,const char *salt) { ufc_long *s; char ktab[9]; /* * Hack DES tables according to salt */ setup_salt(salt); /* * Setup key schedule */ clearmem(ktab, sizeof ktab); StrnCpy(ktab, key, 8); ufc_mk_keytab(ktab); /* * Go for the 25 DES encryptions */ s = _ufc_doit((ufc_long)0, (ufc_long)0, (ufc_long)0, (ufc_long)0, (ufc_long)25); /* * And convert back to 6 bit ASCII */ return output_conversion(s[0], s[1], salt); }#ifdef _UFC_32_/* * 32 bit version */extern long32 _ufc_keytab[16][2];extern long32 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[];#define SBA(sb, v) (*(long32*)((char*)(sb)+(v)))static ufc_long *_ufc_doit(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2, ufc_long itr) { int i; long32 s, *k; while(itr--) { k = &_ufc_keytab[0][0]; for(i=8; i--; ) { s = *k++ ^ r1; l1 ^= SBA(_ufc_sb1, s & 0xffff); l2 ^= SBA(_ufc_sb1, (s & 0xffff)+4); l1 ^= SBA(_ufc_sb0, s >>= 16); l2 ^= SBA(_ufc_sb0, (s) +4); s = *k++ ^ r2; l1 ^= SBA(_ufc_sb3, s & 0xffff); l2 ^= SBA(_ufc_sb3, (s & 0xffff)+4); l1 ^= SBA(_ufc_sb2, s >>= 16); l2 ^= SBA(_ufc_sb2, (s) +4); s = *k++ ^ l1; r1 ^= SBA(_ufc_sb1, s & 0xffff); r2 ^= SBA(_ufc_sb1, (s & 0xffff)+4); r1 ^= SBA(_ufc_sb0, s >>= 16); r2 ^= SBA(_ufc_sb0, (s) +4); s = *k++ ^ l2; r1 ^= SBA(_ufc_sb3, s & 0xffff); r2 ^= SBA(_ufc_sb3, (s & 0xffff)+4); r1 ^= SBA(_ufc_sb2, s >>= 16); r2 ^= SBA(_ufc_sb2, (s) +4); } s=l1; l1=r1; r1=s; s=l2; l2=r2; r2=s; } return _ufc_dofinalperm(l1, l2, r1, r2); }#endif#ifdef _UFC_64_/* * 64 bit version */extern long64 _ufc_keytab[16];extern long64 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[];#define SBA(sb, v) (*(long64*)((char*)(sb)+(v)))static ufc_long *_ufc_doit(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2, ufc_long itr) { int i; long64 l, r, s, *k; l = (((long64)l1) << 32) | ((long64)l2); r = (((long64)r1) << 32) | ((long64)r2); while(itr--) { k = &_ufc_keytab[0]; for(i=8; i--; ) { s = *k++ ^ r; l ^= SBA(_ufc_sb3, (s >> 0) & 0xffff); l ^= SBA(_ufc_sb2, (s >> 16) & 0xffff); l ^= SBA(_ufc_sb1, (s >> 32) & 0xffff); l ^= SBA(_ufc_sb0, (s >> 48) & 0xffff); s = *k++ ^ l; r ^= SBA(_ufc_sb3, (s >> 0) & 0xffff); r ^= SBA(_ufc_sb2, (s >> 16) & 0xffff); r ^= SBA(_ufc_sb1, (s >> 32) & 0xffff); r ^= SBA(_ufc_sb0, (s >> 48) & 0xffff); } s=l; l=r; r=s; } l1 = l >> 32; l2 = l & 0xffffffff; r1 = r >> 32; r2 = r & 0xffffffff; return _ufc_dofinalperm(l1, l2, r1, r2); }#endif#else int ufc_dummy_procedure(void); int ufc_dummy_procedure(void) {return 0;}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -