⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ufc.c

📁 samba-3.0.22.tar.gz 编译smb服务器的源码
💻 C
📖 第 1 页 / 共 2 页
字号:
/*   This bit of code was derived from the UFC-crypt package which   carries the following copyright       Modified for use by Samba by Andrew Tridgell, October 1994   Note that this routine is only faster on some machines. Under Linux 1.1.51    libc 4.5.26 I actually found this routine to be slightly slower.   Under SunOS I found a huge speedup by using these routines    (a factor of 20 or so)   Warning: I've had a report from Steve Kennedy <steve@gbnet.org>   that this crypt routine may sometimes get the wrong answer. Only   use UFC_CRYT if you really need it.*/#include "includes.h"#ifndef HAVE_CRYPT/* * UFC-crypt: ultra fast crypt(3) implementation * * Copyright (C) 1991-1998, Free Software Foundation, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the Free * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * @(#)crypt_util.c	2.31 02/08/92 * * Support routines * */#ifndef long32#define long32 int32#endif#ifndef long64#define long64 int64#endif#ifndef ufc_long#define ufc_long unsigned#endif#ifndef _UFC_64_#define _UFC_32_#endif/*  * Permutation done once on the 56 bit  *  key derived from the original 8 byte ASCII key. */static int pc1[56] = {   57, 49, 41, 33, 25, 17,  9,  1, 58, 50, 42, 34, 26, 18,  10,  2, 59, 51, 43, 35, 27, 19, 11,  3, 60, 52, 44, 36,  63, 55, 47, 39, 31, 23, 15,  7, 62, 54, 46, 38, 30, 22,  14,  6, 61, 53, 45, 37, 29, 21, 13,  5, 28, 20, 12,  4};/* * How much to rotate each 28 bit half of the pc1 permutated *  56 bit key before using pc2 to give the i' key */static int rots[16] = {   1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 };/*  * Permutation giving the key  * of the i' DES round  */static int pc2[48] = {   14, 17, 11, 24,  1,  5,  3, 28, 15,  6, 21, 10,  23, 19, 12,  4, 26,  8, 16,  7, 27, 20, 13,  2,  41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,  44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32};/* * The E expansion table which selects * bits from the 32 bit intermediate result. */static int esel[48] = {   32,  1,  2,  3,  4,  5,  4,  5,  6,  7,  8,  9,   8,  9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,  16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,  24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32,  1};static int e_inverse[64];/*  * Permutation done on the  * result of sbox lookups  */static int perm32[32] = {  16,  7, 20, 21, 29, 12, 28, 17,  1, 15, 23, 26,  5, 18, 31, 10,  2,   8, 24, 14, 32, 27,  3,  9, 19, 13, 30,  6, 22, 11,  4, 25};/*  * The sboxes */static int sbox[8][4][16]= {        { { 14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7 },          {  0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8 },          {  4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0 },          { 15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13 }        },        { { 15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10 },          {  3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5 },          {  0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15 },          { 13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9 }        },        { { 10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8 },          { 13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1 },          { 13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7 },          {  1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12 }        },        { {  7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15 },          { 13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9 },          { 10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4 },          {  3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14 }        },        { {  2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9 },          { 14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6 },          {  4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14 },          { 11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3 }        },        { { 12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11 },          { 10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8 },          {  9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6 },          {  4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13 }        },        { {  4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1 },          { 13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6 },          {  1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2 },          {  6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12 }        },        { { 13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7 },          {  1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2 },          {  7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8 },          {  2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11 }        }};/*  * This is the final  * permutation matrix */static int final_perm[64] = {  40,  8, 48, 16, 56, 24, 64, 32, 39,  7, 47, 15, 55, 23, 63, 31,  38,  6, 46, 14, 54, 22, 62, 30, 37,  5, 45, 13, 53, 21, 61, 29,  36,  4, 44, 12, 52, 20, 60, 28, 35,  3, 43, 11, 51, 19, 59, 27,  34,  2, 42, 10, 50, 18, 58, 26, 33,  1, 41,  9, 49, 17, 57, 25};/*  * The 16 DES keys in BITMASK format  */#ifdef _UFC_32_long32 _ufc_keytab[16][2];#endif#ifdef _UFC_64_long64 _ufc_keytab[16];#endif#define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.')#define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.')/* Macro to set a bit (0..23) */#define BITMASK(i) ( (1<<(11-(i)%12+3)) << ((i)<12?16:0) )/* * sb arrays: * * Workhorses of the inner loop of the DES implementation. * They do sbox lookup, shifting of this  value, 32 bit * permutation and E permutation for the next round. * * Kept in 'BITMASK' format. */#ifdef _UFC_32_long32 _ufc_sb0[8192], _ufc_sb1[8192], _ufc_sb2[8192], _ufc_sb3[8192];static long32 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3}; #endif#ifdef _UFC_64_long64 _ufc_sb0[4096], _ufc_sb1[4096], _ufc_sb2[4096], _ufc_sb3[4096];static long64 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3}; #endif/*  * eperm32tab: do 32 bit permutation and E selection * * The first index is the byte number in the 32 bit value to be permuted *  -  second  -   is the value of this byte *  -  third   -   selects the two 32 bit values * * The table is used and generated internally in init_des to speed it up */static ufc_long eperm32tab[4][256][2];/*  * do_pc1: permform pc1 permutation in the key schedule generation. * * The first   index is the byte number in the 8 byte ASCII key *  -  second    -      -    the two 28 bits halfs of the result *  -  third     -   selects the 7 bits actually used of each byte * * The result is kept with 28 bit per 32 bit with the 4 most significant * bits zero. */static ufc_long do_pc1[8][2][128];/* * do_pc2: permform pc2 permutation in the key schedule generation. * * The first   index is the septet number in the two 28 bit intermediate values *  -  second    -    -  -  septet values * * Knowledge of the structure of the pc2 permutation is used. * * The result is kept with 28 bit per 32 bit with the 4 most significant * bits zero. */static ufc_long do_pc2[8][128];/* * efp: undo an extra e selection and do final *      permutation giving the DES result. *  *      Invoked 6 bit a time on two 48 bit values *      giving two 32 bit longs. */static ufc_long efp[16][64][2];static unsigned char bytemask[8]  = {  0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};static ufc_long longmask[32] = {  0x80000000, 0x40000000, 0x20000000, 0x10000000,  0x08000000, 0x04000000, 0x02000000, 0x01000000,  0x00800000, 0x00400000, 0x00200000, 0x00100000,  0x00080000, 0x00040000, 0x00020000, 0x00010000,  0x00008000, 0x00004000, 0x00002000, 0x00001000,  0x00000800, 0x00000400, 0x00000200, 0x00000100,  0x00000080, 0x00000040, 0x00000020, 0x00000010,  0x00000008, 0x00000004, 0x00000002, 0x00000001};/* * Silly rewrite of 'bzero'. I do so * because some machines don't have * bzero and some don't have memset. */static void clearmem(char *start, int cnt)  { while(cnt--)      *start++ = '\0';  }static int initialized = 0;/* lookup a 6 bit value in sbox */#define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf];/* * Initialize unit - may be invoked directly * by fcrypt users. */static void ufc_init_des(void)  { int comes_from_bit;    int bit, sg;    ufc_long j;    ufc_long mask1, mask2;    /*     * Create the do_pc1 table used     * to affect pc1 permutation     * when generating keys     */    for(bit = 0; bit < 56; bit++) {      comes_from_bit  = pc1[bit] - 1;      mask1 = bytemask[comes_from_bit % 8 + 1];      mask2 = longmask[bit % 28 + 4];      for(j = 0; j < 128; j++) {	if(j & mask1) 	  do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2;      }    }    /*     * Create the do_pc2 table used     * to affect pc2 permutation when     * generating keys     */    for(bit = 0; bit < 48; bit++) {      comes_from_bit  = pc2[bit] - 1;      mask1 = bytemask[comes_from_bit % 7 + 1];      mask2 = BITMASK(bit % 24);      for(j = 0; j < 128; j++) {	if(j & mask1)	  do_pc2[comes_from_bit / 7][j] |= mask2;      }    }    /*      * Now generate the table used to do combined     * 32 bit permutation and e expansion     *     * We use it because we have to permute 16384 32 bit     * longs into 48 bit in order to initialize sb.     *     * Looping 48 rounds per permutation becomes      * just too slow...     *     */    clearmem((char*)eperm32tab, sizeof(eperm32tab));    for(bit = 0; bit < 48; bit++) {      ufc_long inner_mask1,comes_from;	      comes_from = perm32[esel[bit]-1]-1;      inner_mask1      = bytemask[comes_from % 8];	      for(j = 256; j--;) {	if(j & inner_mask1)	  eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK(bit % 24);      }    }        /*      * Create the sb tables:     *     * For each 12 bit segment of an 48 bit intermediate     * result, the sb table precomputes the two 4 bit     * values of the sbox lookups done with the two 6     * bit halves, shifts them to their proper place,     * sends them through perm32 and finally E expands     * them so that they are ready for the next     * DES round.     *     */    for(sg = 0; sg < 4; sg++) {      int j1, j2;      int s1, s2;          for(j1 = 0; j1 < 64; j1++) {	s1 = s_lookup(2 * sg, j1);	for(j2 = 0; j2 < 64; j2++) {	  ufc_long to_permute, inx;    	  s2         = s_lookup(2 * sg + 1, j2);	  to_permute = ((s1 << 4)  | s2) << (24 - 8 * sg);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -