📄 tssmooth_dexponential.hlp
字号:
{smcl}
{* 08mar2005}{...}
{cmd:help tssmooth dexponential}{right:dialog: {bf:{dialog tssmooth_dexponential:tssmooth dexponential}}}
{hline}
{title:Title}
{p2colset 5 35 37 2}{...}
{p2col :{hi:[TS] tssmooth dexponential} {hline 2}}Double-exponential smoothing{p_end}
{p2colreset}{...}
{title:Syntax}
{p 8 20 2}
{cmd:tssmooth} {opt d:exponential} {dtype} {newvar} {cmd:=}
{it:{help exp}} {ifin} [{cmd:,}
{it:options}]
{synoptset 15 tabbed}{...}
{synopthdr}
{synoptline}
{syntab:Main}
{synopt :{opt replace}}replace {newvar} if it already exists{p_end}
{synopt :{opt p:arms(#a)}}use {it:#a} as smoothing parameter{p_end}
{synopt :{opt sa:mp0(#)}}use {it:#} observations to obtain initial values for
recursion{p_end}
{synopt :{opt s0(#1 #2)}}use {it:#1} and {it:#2} as initial values for
recursions{p_end}
{synopt :{opt f:orecast(#)}}use {it:#} periods for the out-of-sample
forecast{p_end}
{synoptline}
{p2colreset}{...}
{p 4 6 2}You must {helpb tsset} your data before using {cmd:tssmooth}.{p_end}
{p 4 6 2}{it:{help exp}} may contain time-series operators; see {help tsvarlist}.
{title:Description}
{pstd}
{cmd:tssmooth dexponential} models the trend of a variable whose difference
between changes from the previous values is serially correlated. More
precisely, it models a variable whose second-difference follows a low-order,
moving-average process.
{title:Options}
{dlgtab:Main}
{phang}
{opt replace} replaces {newvar} if it already exists.
{phang}
{opt parms(#a)} specifies the parameter alpha for the
double-exponential smoothers; 0 < {it:#a} < 1. If {opt parms(#a)} is not
specified, the smoothing parameter is chosen to minimize the in-sample
sum-of-squared forecast errors.
{phang}
{opt samp0(#)} and {opt s0(#1 #2)} are mutually exclusive ways of specifying
the initial value for the recursion.
{pmore}
By default, initial values are obtained by fitting a linear regression with a
time trend using the first half of the observations in the dataset.
{pmore}
{opt samp0(#)} specifies that the first {it:#} be used in that regression.
{pmore}
{opt s0(#1 #2)} specifies that {it:#1} {it:#2} be used as initial values.
{phang}
{opt forecast(#)} specifies the number of periods for the out-of-sample
prediction. {bind:0 {ul:<} {it:#} {ul:<} 500}. The default is 0, which is
equivalent to not performing an out-of-sample forecast.
{title:Examples}
{psee}{cmd:. tssmooth dexponential sm1 = sales, parms(.3)}
{psee}{cmd:. tssmooth dexponential sm2 = sales, forecast(4)}
{title:Also see}
{psee}
Manual: {bf:[TS] tssmooth dexponential}
{psee}
Online: {helpb arima}, {helpb egen}, {helpb generate},
{helpb tsset}, {helpb tssmooth exponential},
{helpb tssmooth hwinters}, {helpb tssmooth ma}, {helpb tssmooth nl},
{helpb tssmooth shwinters}{p_end}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -