📄 y_estchoice.hlp
字号:
{smcl}
{p 0 4}
{help contents:Top}
> {help y_stat:Statistics}
> {help y_est:Estimation}
> {help y_est0:Regression models}
{bind:> {bf:Choice models}}
{p_end}
{hline}
{title:Help file listings}
{p 4 8 4}
{bf:{help mlogit:Multinomial (polytomous) logistic regression}}{break}
maximum-likelihood multinomial (polytomous) logistic regression
{p 4 8 4}
{bf:{help mprobit:Multinomial probit regression}}{break}
maximum-likelihood multinomial probit regression
{p 4 8 4}
{bf:{help asmprobit:Alternative-specific multinomial probit regression}}{break}
maximum simulated-likelihood alternative-specific multinomial
probit models
{p 4 8 4}
{bf:{help clogit:Conditional logistic regression}}{break}
McFadden choice model and extensions
{p 4 8 4}
{bf:{help nlogit:Nested logit estimation}}{break}
nested logit model using full maximum-likelihood
{p 4 8 4}
{bf:{help ologit:Ordered logit estimation}}{break}
maximum-likelihood ordered logit model
{p 4 8 4}
{bf:{help rologit:Rank-ordered logistic regression}}{break}
rank-ordered logit model for rankings (also known as the
Plackett-Luce, exploded logit, or choice-based conjoint analysis model)
{p 4 8 4}
{bf:{help slogit:Stereotype logistic regression}}{break}
maximum-likelihood stereotype regression models
{p 4 8 4}
{bf:{help oprobit:Ordered probit estimation}}{break}
maximum-likelihood ordered probit model
{p 4 8 4}
{bf:{help probit:Probit estimation}}{break}
maximum-likelihood probit estimation
{p 4 8 4}
{bf:{help hetprob:Heteroskedastic probit estimation}}{break}
maximum-likelihood heteroskedastic probit model
{p 4 8 4}
{bf:{help logit:Logit estimation}}{break}
maximum-likelihood logit tailored for social scientists
{p 4 8 4}
{bf:{help glogit:Logit and probit estimation on grouped data}}{break}
also weighted least-squares logit and probit
INCLUDE help ypostnote
{hline}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -