📄 y_e_logit.hlp
字号:
{smcl}
{p 0 4}
{help contents:Top}
> {help y_stat:Statistics}
> {help y_est:Estimation}
> {help y_est0:Regression models}
> {help y_e_bin:Binary outcome data}
{bind:> {bf:Logit and logistic regression}}
{p_end}
{hline}
{title:Help and category listings}
{p 4 8 4}
{bf:{help logistic:Logistic regression command}}{break}
maximum-likelihood logistic regression
{p 4 8 4}
{bf:{help logit:Logit estimation command}}{break}
same as above but reports coefficients
{p 4 8 4}
{bf:{help logistic_postestimation:Postestimation commands for use after logistic or logit}}{break}
classification table, goodness-of-fit test, ROC curve,
graphs ... after logistic or logit
{p 4 8 4}
{bf:{help glogit:Logit estimation on grouped data}}{break}
logit estimation on grouped (blocked) data; weighted least-squares logit
{p 4 8 4}
{bf:{help scobit:Skewed logit estimation}}{break}
maximum-likelihood skewed logit regression
{p 4 8 4}
{bf:{help roctab:Receiver Operating Characteristic (ROC) analysis}}{break}
nonparametric ROC analyses; ROC curves
with confidence bands; test equality of ROC areas
{p 4 8 4}
{bf:{help rocfit:Receiver Operating Characteristic (ROC) models}}{break}
maximum-likelihood ROC models
{p 4 8 4}
{bf:{help brier:Brier score decomposition}}{break}
Computes Yates, Sanders, and Murphy decompositions of the Brier
mean probability score
INCLUDE help ypostnote
{hline}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -