📄 matrix_svd.hlp
字号:
{smcl}
{* 28mar2005}{...}
{cmd:help matrix svd} {right:dialog: {bf:{dialog matrix_svd:matrix svd}}}
{hline}
{title:Title}
{p2colset 5 23 25 2}{...}
{p2col :{hi:[P] matrix svd} {hline 2}}Singular value decomposition{p_end}
{p2colreset}{...}
{title:Syntax}
{p 8 15 2}{cmdab:mat:rix} {cmd:svd} {it:U} {it:W} {it:V} {cmd:=} {it:A}
{pstd}
where {it:U}, {it:W}, and {it:V} are matrix names (the matrices may exist
or not) and {it:A} is the name of an existing m x n, m {ul:>} n matrix.
{title:Description}
{pstd}
{cmd:matrix svd} produces the singular value decomposition (SVD) of {it:A}.
{pstd}
The singular value decomposition of m x n matrix {it:A}, m {ul:>} n, is defined
as
{it:A} = {it:U} diag({it:W}) {it:V}'
{pstd}
In addition, {it:U} is column orthogonal, the elements of {it:W} are
positive or zero, and {it:V}'{it:V}=I.
{title:Examples}
{phang}{cmd:. matrix svd U W V = A}
{title:Also see}
{psee}
Manual: {bf:[P] matrix svd}
{psee}
Online: {helpb matrix}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -