📄 mf_toeplitz.hlp
字号:
{smcl}
{* 07apr2005}{...}
{bf:help mata Toeplitz()}
{hline}
{* index Toeplitz()}{...}
{title:Title}
{p 4 4 2}
{bf:[M-5] Toeplitz() -- Toeplitz matrices}
{title:Syntax}
{p 8 12 2}
{it:numeric matrix}
{cmd:Toeplitz(}{it:numeric colvector c1}{cmd:,}
{it:numeric rowvector r1}{cmd:)}
{title:Description}
{p 4 4 2}
{cmd:Toeplitz(}{it:c1}{cmd:,} {it:r1}{cmd:)}
returns the Toeplitz matrix defined by {it:c1} being its first
column and {it:r1} being its first row. A Toeplitz matrix {it:T} is
characterized by {it:T}[{it:i},{it:j}] = {it:T}[{it:i}-1,{it:j}-1],
{it:i, j} > 1.
In a Toeplitz matrix, each diagonal is constant.
{p 4 2 2}
Vectors {it:c1} and {it:r1} specify the first column and first row of {it:T}.
{title:Remarks}
{p 4 4 2}
{it:c1}[1] is used to fill {it:T}[1,1] and {it:r1}[1] is not used.
{p 4 4 2}
To obtain the symmetric (Hermitian) Toeplitz matrix, code
{cmd:Toeplitz(}{it:v}{cmd:,} {it:v}{cmd:')}
(if {it:v} is a column vector), or
{cmd:Toeplitz(}{it:v}{cmd:',} {it:v}{cmd:)} if {it:v} is a row vector.
{title:Conformability}
{cmd:Toeplitz(}{it:c1}{cmd:,} {it:r1}{cmd:)}:
{it:c1}: {it:r x} 1
{it:r1}: 1 {it:x} c
{it:result}: {it:r x c}
{title:Diagnostics}
{p 4 4 2}
None. Note that the top left element is defined by {it:c1}[1] and
that {it:r1}[1] is not used.
{title:Source code}
{p 4 4 2}
{view toeplitz.mata, adopath asis:toeplitz.mata}
{title:Also see}
{p 4 13 2}
Manual: {hi:[M-5] Toeplitz()}
{p 4 13 2}
Online: help for
{bf:{help m4_matrix:[M-4] matrix}}
{p_end}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -