📄 m4_solvers.hlp
字号:
{smcl}
{* 18jan2005}{...}
{cmd:help m4 solvers}
{hline}
{* index matrix functions}{...}
{* index mathematical functions}{...}
{* index solve AX=B}{...}
{* index inverse matrix}{...}
{title:Title}
{p 4 4 2}
{bf:[M-4] solvers -- Functions to solve AX=B and to obtain A inverse}
{title:Contents}
{col 8} {bf:[M-5]}
{col 5}{bf:Manual entry{col 22}Function{col 35}Purpose}
{col 5}{hline}
{col 5} {c TLC}{hline 9}{c TRC}
{col 5}{hline 3}{c RT}{it: Solvers }{c LT}{hline}
{col 5} {c BLC}{hline 9}{c BRC}
{col 8}{bf:{help mf_cholsolve:cholsolve()}}{...}
{col 22}{cmd:cholsolve()}{...}
{col 35}{it:A} positive definite, symmetric or Hermitian
{col 8}{bf:{help mf_lusolve:lusolve()}}{...}
{col 22}{cmd:lusolve()}{...}
{col 35}{it:A} full rank, square, real or complex
{col 8}{bf:{help mf_qrsolve:qrsolve()}}{...}
{col 22}{cmd:qrsolve()}{...}
{col 35}{it:A} general; {it:m x n}, {it:m} >= {it:n}, real or complex;
{col 35}least-squares generalized solution
{col 8}{bf:{help mf_svsolve:svsolve()}}{...}
{col 22}{cmd:svsolve()}{...}
{col 35}generalized; {it:m x n}, real or complex;
{col 35}minimum norm, least-squares solution
{col 5} {c TLC}{hline 11}{c TRC}
{col 5}{hline 3}{c RT}{it: Inverters }{c LT}{hline}
{col 5} {c BLC}{hline 11}{c BRC}
{col 8}{bf:{help mf_invsym:invsym()}}{...}
{col 22}{cmd:invsym()}{...}
{col 35}generalized; real symmetric
{col 8}{bf:{help mf_cholinv:cholinv()}}{...}
{col 22}{cmd:cholinv()}{...}
{col 35}positive definite; symmetric or Hermitian
{col 8}{bf:{help mf_luinv:luinv()}}{...}
{col 22}{cmd:luinv()}{...}
{col 35}full rank; square; real or complex
{col 8}{bf:{help mf_qrinv:qrinv()}}{...}
{col 22}{cmd:qrinv()}{...}
{col 35}generalized; {it:m x n}, {it:m} >= {it:n}; real or complex
{col 8}{bf:{help mf_pinv:pinv()}}{...}
{col 22}{cmd:pinv()}{...}
{col 35}generalized; {it:m x n}, real or complex
{col 35}Moore-Penrose pseudoinverse
{col 5}{hline}
{title:Description}
{p 4 4 2}
The above functions solve {it:AX}={it:B} for {it:X}
and solve for {it:A}^(-1).
{title:Remarks}
{p 4 4 2}
Matrix solvers can be used to implement matrix inverters, and so the
two nearly always come as a pair.
{p 4 4 2}
Solvers solve
{it:AX}={it:B}
for {it:X}.
One way to obtain {it:A}^(-1) is to solve
{it:AX}={it:I}. If
{bind:{it:f}({it:A}, {it:B})} solves {it:AX}={it:B},
then
{bind:{it:f}({it:A}, {cmd:I(rows(}{it:A}{cmd:))}}
solves for the inverse.
Some matrix
inverters are in fact implemented this way, although usually
custom code is written because memory savings are possible when it is known
that {it:B}={it:I}.
{p 4 4 2}
The pairings of inverter and solver are
inverter solver
{hline 37}
{cmd:invsym()} (none)
{cmd:cholinv()} {bf:{help mf_cholsolve:[M-5] cholsolve()}}
{cmd:luinv()} {bf:{help mf_lusolve:[M-5] lusolve()}}
{cmd:qrinv()} {bf:{help mf_qrsolve:[M-5] qrsolve()}}
{cmd:pinv()} {bf:{help mf_svsolve:[M-5] svsolve()}}
{hline 37}
{title:Also see}
{p 4 13 2}
Manual: {hi:[M-4] solvers}
{p 4 13 2}
Online: help for
{bf:{help m4_intro:[M-4] intro}};
{bf:{help mata:[M-0] intro}}
{p_end}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -